Indexing recruitment for source populations contributing to mixed fisheries by incorporating age in genetic stock identification models

Travis O. Brenden ${ }^{1,2}$, Iyob Tsehaye ${ }^{1,2}$, James R. Bence ${ }^{1,2}$, Jeannette Kanefsky ${ }^{2}$, and Kim T. Scribner ${ }^{2}$
${ }^{1}$ Quantitative Fisheries Center, Michigan State University, 375 Wilson Road, East Lansing, Michigan 48824, USA
${ }^{2}$ Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Rd., East Lansing, Michigan 48824, USA

Abstract: We describe a methodology for estimating relative recruitments for source populations (sources) contributing to mixed fisheries by incorporating age into genetic stock identification models. The approach produced recruitment estimates that were strongly correlated (median correlation $=0.849 ; 2.5$ and 97.5 percentile in correlations $=0.613$ and 0.951) with simulated recruitments across various design factors, including number of sources, genetic divergence among sources, and temporal variation in source recruitments. Sensitivity analyses indicated that the approach was robust to aging inaccuracies and assumed source mortalities. Application to walleye Sander vitreus sources contributing to the Saginaw Bay, Lake Huron fishery produced similar recruitment estimates to assessment models. There was greater discrepancy between recruitment estimates for lake trout Salvelinus namaycush hatchery strains in northern Lake Michigan when compared to strain stocking levels, although this mismatch may stem from stocking levels being a poor recruitment measure. The estimation approach should prove beneficial for indexing source recruitment based on fishery or assessment collections from mixtures, even when long-term time-series of harvest and survey data required for integrated assessments are not available.

Introduction

Recruitment (number of hatched individuals surviving early-life mortality) is one of the fundamental rate functions governing the dynamics of populations, along with growth and mortality of older individuals. Often in marine and freshwater fish populations, recruitment is characterized by considerable spatial and temporal variation (Sissenwine 1984; Fogarty 1993; Myers et al. 1997; Thorson et al. 2014; Hansen et al. 2015). Recruitment levels can vary in response to spawning stock size due to associated changes in the number and quality of progeny produced, and density-dependent early life survival, and the influence of these factors are reflected in stock-recruitment models. Although there are cases where average recruitment stays nearly constant over a range of stock sizes (e.g., when the stock-recruitment relationship is steep and approaches an asymptote), recruitment levels still typically vary substantially due to biological, physical, and environmental factors that influence early-life survival, spawning stock fecundity, or other aspects of the regeneration cycle of populations (Hilborn and Walters 1992; Quinn and Deriso 1999).

From a fisheries management perspective, knowledge of recruitment patterns, underlying relationships with spawning stock biomass, and the extent of variability within and among populations is considered critical (Miller 2007; Ludsin et al. 2014). The relationship between spawning stock biomass and subsequent reproduction and recruitment to the fishable population largely dictate how much yield can be sustainably harvested from populations, which has resulted in the identification and wide use of harvest policies based on reference points derived from review of stock-recruitment relationships for fish stocks (Mace 1994; Myers et al. 1994). In cases of mixed fisheries [i.e., fisheries that exploit individuals from multiple source populations (hereafter mixtures)], an understanding of recruitment levels and variability in recruitment of
individual source populations is also important as less productive populations can be overharvested if policies do not account for productivity differences among populations (Hutchings 1996, 2000; Stephenson 1999; Frank and Brickman 2000; Reiss et al. 2009). Unfortunately, accurate evaluation of recruitment levels of source populations (hereafter sources) that contribute to mixtures can be difficult if assessment sampling is not conducted when populations are separated (Guan et al. 2013; Li et al. 2015).

Herein, we propose a methodological approach for estimating annual relative recruitment levels for sources based on recreational, commercial, or assessment collections from mixtures, and use simulations to evaluate the estimation performance of the approach. The proposed methodology incorporates age of fish collected from mixtures into widely used model-based genetic stock identification (GSI) analyses (e.g., Pella and Milner 1987; Pella and Masuda 2001). Bjorndal and Bolten (2008) previously noted that temporal variation in source contributions to mixtures can arise from variations in recruitment, mortality, and/or emigration. The methodology we propose is premised on using observed temporal variability in source contributions and available information on mortality and limiting assumptions on movement as a means to index annual changes in source-specific recruitment levels. Whereas similar approaches have assumed that annual changes in recruitment levels of sources are consistent across years (Tsehaye et al. 2016), the approach we present here allows for annual fluctuations in source recruitment levels. The availability of genetic data is increasing, as is the awareness of how these data can be used in stock assessments (Spies and Punt 2015). We emphasize that our proposed methodology has more limited objectives (estimation of relative recruitment from multiple sources to a mixture) and substantially lower data requirements than a spatially explicit integrated assessment would.

97

We provide two empirical applications of the proposed methodology using mixture data for walleye Sander vitreus from Saginaw Bay, Lake Huron and lake trout Salvelinus namaycush from northern Lake Michigan. For the walleye example, the contributing sources were Lake Huron and Lakes Erie and St. Clair (hereafter Lake Erie/St. Clair) walleye populations (Fig. 1). For the lake trout example, the contributing source data consisted of different hatchery strains that have been stocked into Lake Michigan (i.e., until recently negligible wild reproduction of lake trout occurred in the lake) (Fig. 1). For both the walleye and lake trout examples, other estimates of recruitment levels for contributing sources were available to which recruitment estimates from our proposed methodology could be compared. The comparison of recruitment estimates from our proposed approach with those from these other data sources did not represent a true validation of the proposed methodology, as actual recruitment levels for both the walleye and lake trout case studies were unknown. However, the simulations that were conducted as part of this research did provide a means to validate performance accuracy, as in these cases recruitment levels of the sources were known.

Methods

Estimation approach

For regular model-based GSI analysis, the probability (π) of observing genotype samples (X) in a mixture given estimates of the source proportional contributions (\boldsymbol{p}) and allele relative frequencies at each locus and source (\boldsymbol{Q}) is generally specified as
$\pi(\mathrm{X} \mid \boldsymbol{Q}, \boldsymbol{p})=\prod_{m=1}^{M} \sum_{i=1}^{I} p_{i} f\left(\mathrm{X}_{m} \mid \boldsymbol{Q}_{i}\right)$
where $M(m=1 \ldots M)$ is the number of fish sampled from the mixture, $I(i=1 \ldots I)$ is the number of sources, p_{i} is the proportional contribution for the i-th source (i.e., the i-th element of \boldsymbol{p}) to the mixture, and $f\left(\mathrm{X}_{m} \mid \boldsymbol{Q}_{i}\right)$ is the probability of an individual from the i-th source having the same genotype as the m-th individual from the mixture, which is determined from the allele relative frequencies for the i-th source under an assumed genetic model (e.g., Hardy-Weinberg equilibrium) (Pella and Milner 1987; Pella and Masuda 2001). As in Pella and Masuda (2001), if $x_{m, h, j}$ denotes the count of the j-th allele of the h-th locus for the m-th individual, then X_{m} constitutes the collective allele counts for all loci for the m-th individual. As noted by Tsehaye et al. (2016), to infer changes in recruitment levels within the context of GSI analyses, proportional contributions for sources must be expanded to include ages of individuals collected from the mixture and when the mixture was sampled (i.e., sampling year). Thus, Equation 1 gets expanded to
$\pi\left(\mathrm{X} \mid \boldsymbol{Q}, \boldsymbol{P}^{s}\right)=\prod_{m=1}^{M} \sum_{i=1}^{I} P_{i, a}^{s} f\left(\mathrm{X}_{m} \mid \boldsymbol{Q}_{i}\right)$
where X_{m} now also include the age (a) of the m-th individual along with the individual's multilocus genotype, $P_{i, a}^{s}$ is the proportional contribution of the i-th source population for the a th age class in the s-th sampling year, and \boldsymbol{P}^{s} is the collection of proportional contributions for the sources and age classes for a particular sampling year. As with \boldsymbol{p}, the elements of \boldsymbol{P}^{s} for each sampling year are defined on the simplex (contributions must be greater than 0 , less than 1 , and must sum to 1 across all elements).

For indexing recruitment, Tsehaye et al. (2016) proposed modeling the elements of \boldsymbol{P}^{s} through mathematical representation of the underlying population-specific processes affecting abundance levels. The population-specific process assumed by Tsehaye et al. (2016) was
intended for a long-lived species such as lake sturgeon Acipenser fulvescens with high prerecruitment mortality and low (and relatively constant) post-recruitment mortality rates, which results in a constant rate of change in recruitment levels (on a $\log _{e}$ scale time) over time. We adopt a similar approach herein; however, we assume an underlying process that allows annual recruitment levels to fluctuate. Specifically, we propose that recruitment of the sources be modeled as multiplicative deviations from an overall grand mean recruitment level

$$
\begin{equation*}
N_{i, 0}^{y}=\mu \cdot \exp \left(\tau_{i}+\gamma_{y}+v_{i, y}\right) \tag{3}
\end{equation*}
$$

where $N_{i, 0}^{y}$ is the abundance at age 0 (or an alternative specified age of recruitment) for the i-th source and the y-th year class, μ is the grand mean abundance at age of recruitment, τ_{i} are source deviations from the grand mean, γ_{y} are year-class deviations (i.e., coherent temporal deviations common to all sources) from the grand mean, and $v_{i, y}$ are source \times year-class interaction deviations (i.e., ephemeral-temporal deviations that are independent year-class deviations for each source). Estimation of the grand mean abundance is generally not possible from mixture compositions. Consequently, Equation 3 reduces to

$$
\begin{equation*}
\log _{e}\left(\tilde{N}_{i, 0}^{y}\right)=\tau_{i}+\gamma_{y}+v_{i, y} \tag{4}
\end{equation*}
$$

where $\widetilde{N}_{i, 0}^{y}$ is the relative recruitment levels for the sources (i.e. $\widetilde{N}_{i, 0}^{y}=N_{i, 0}^{y} / \mu$).
Relative abundances at age for the sources associated with different year classes can be forward projected using a standard exponential mortality model

$$
\begin{equation*}
\log _{e}\left(\tilde{N}_{i, a}^{y}\right)=\log _{e}\left(\tilde{N}_{i, 0}^{y}\right)-\sum_{o=1}^{a} Z_{i, o-1} \tag{5}
\end{equation*}
$$

where $\sum_{o=1}^{a} Z_{i, o-1}$ is the cumulative instantaneous total mortality experienced by the i-th source up to the a-th age and o is used to index age. With a mixture fishery operating in a specific location
of a system, only certain fractions of the sources are likely to move to this region and be subject to exploitation. Thus, the expected relative abundances at age for the sources located within the boundaries where a mixed fishery operates is
$\ddot{N}_{i, a}^{y}=d_{i, a} \widetilde{N}_{i, a}^{y}$
where $d_{i, a}$ is the fraction of fish from the i-th source and a-th age that move into the region of the mixture fishery.

When collections are made from mixtures in a particular sampling year, collected individuals represent a range of year classes with the range depending on the sampling year and ages of collected individuals. Consequently, the expected proportional contributions to a mixture from the i-th source for the a-th age can be calculated as

$$
\begin{equation*}
P_{i, a}^{s}=\frac{\ddot{N}_{i, a}^{s-a}}{\sum_{i=1}^{I} \sum_{o=\min (a g e)}^{\max (a g e)} \dot{N}_{i, o}^{s-o}} \tag{7}
\end{equation*}
$$

where $\min ($ age $)$ and $\max ($ age $)$ indicate the minimum and maximum age, respectively, in the mixture and $s-o$ and $s-a$ indexes the correct year class for calculating the contributions. As previously indicated, temporal variations in source contributions to mixtures can arise from variations in recruitment, mortality, and/or emigration (Bjorndal and Bolten 2008), and this is evident from Equations 5-7. This means that relative recruitment levels, total mortalities, and movement rates are confounded, thus simplifications and/or assumptions must be made to assess recruitment based on mixture compositions. For our application, we assume that age-specific total mortality estimates for the sources will be available based on other types of analyses, such as catch curve assessments, tagging studies, or other types of direct or indirect methods (Ricker 1975; Hewitt et al. 2007; Then et al. 2014). With respect to movement, it is not necessary for actual movement rates to be known for the sources and ages for recruitment to be indexed based
on the above approach. Rather, it is only necessary for movement rates to be constant across ages within a source for using the approach to index inter-annual variation in relative recruitments. If estimates of source-specific movement rates to the mixture are available, then relative recruitment comparisons across sources can be made so long as source vulnerability to assessment or fishing gear in the mixture is the same.

Under this formulation, the probability in equation 2 can be re-expressed as
$\pi(\mathrm{X} \mid \boldsymbol{Q}, \boldsymbol{\tau}, \boldsymbol{\gamma}, \boldsymbol{v})=\prod_{m=1}^{M} \sum_{i=1}^{I}\left(P_{i, a}^{s}(\boldsymbol{\tau}, \boldsymbol{\gamma}, \boldsymbol{v})\right) f\left(\mathrm{X}_{m} \mid \boldsymbol{Q}_{i}\right)$
where $P_{i, a}^{s}(\boldsymbol{\tau}, \boldsymbol{\gamma}, \boldsymbol{v})$ is used to denote that $P_{i, a}^{s}$ is a function of $\boldsymbol{\tau}, \boldsymbol{\gamma}$, and \boldsymbol{v}. We do not include total mortality and movement rates in the function for $P_{i, a}^{s}$ as in our application we are treating these as fixed constants rather than parameters to be estimated. Equation 8 assumes that ages of individuals from the mixture can be accurately assigned. When aging error occurs, however, the uncertainty in age estimates can be incorporated in the probability calculations as this uncertainty can influence recruitment parameter estimates. With the incorporation of aging error, the probability in Equation 8 gets expanded to
$\pi(\mathrm{X} \mid \boldsymbol{Q}, \boldsymbol{\tau}, \boldsymbol{\gamma}, \boldsymbol{v})=\prod_{m=1}^{M} \sum_{i=1}^{I} \sum_{b=\text { minage }}^{\max (\text { age })} T(a \mid b)\left(P_{i, a}^{s}(\boldsymbol{\tau}, \boldsymbol{\gamma}, \boldsymbol{v})\right) f\left(\mathrm{X}_{m} \mid \boldsymbol{Q}_{i}\right)$
where $T(a \mid b)$ is the probability that an individual identified as being age a is actually age b. Equation 9 does not include parameters associated with calculating the aging error matrix because for simplicity we treat these as known values. In principle, we could include the data needed to estimate the aging error, and estimate parameters needed to construct the matrix in conjunction with the recruitment change parameters, which would necessitate modification to Equation 9.

We programmed the estimation approach described above in AD Model Builder (Fournier et al. 2012). In previous work (Brenden et al. 2015a), we found that accuracy and precision of source contribution estimates to mixture fisheries derived from AD Model Builder were similar to estimates obtained from other routinely used estimation packages for GSI analyses. When estimating τ, γ, and \boldsymbol{v}, we imposed the constraint that the sums of the elements of each must equal 0 . Without these constraints, solutions to $\boldsymbol{\tau}$ and γ were not unique and different values could produce the exact same \boldsymbol{P}^{s} given equation 7. The constraint on \boldsymbol{v} was not necessary to produce unique parameter estimates but it reduced the number of estimated parameters and therefore affected measures of uncertainty of point estimates while having no real consequence on resulting relative recruitment estimates.

Under a Bayesian estimation approach, the posterior probability distributions for the unknown parameters can be specified as
$\pi(\boldsymbol{Q}, \boldsymbol{\tau}, \boldsymbol{\gamma}, \boldsymbol{v} \mid \mathrm{X}, \mathrm{Y}) \propto \pi(\mathrm{X} \mid \boldsymbol{Q}, \boldsymbol{\tau}, \boldsymbol{\gamma}, \boldsymbol{v}) \pi(\boldsymbol{Q} \mid \mathrm{Y}) \pi(\boldsymbol{\tau}) \pi(\boldsymbol{\gamma}) \pi(\boldsymbol{v})$,
where $\pi(\boldsymbol{\tau}), \pi(\gamma)$, and $\pi(\boldsymbol{v})$ are the prior probability distributions assigned to the parameters describing changes in relative recruitment levels, $\pi(\mathbf{Q} \mid \mathrm{Y})$ is the prior probability distribution for allele relative frequencies of the baseline populations (\boldsymbol{Q}) given the collection and genotyping of individuals from the baseline populations (Y), and $\pi(\mathrm{X} \mid \boldsymbol{Q}, \boldsymbol{\tau}, \gamma, \boldsymbol{v})$ is as defined in equations 9 or 10 depending on whether aging error occurs. Our specification of $\pi(\boldsymbol{Q} \mid \mathrm{Y})$ followed the multinomial-Dirichlet hyperparameter updating procedure described in Corander et al. (2006). For $\pi(\tau)$ and $\pi(\gamma)$, uniform distributions with lower and upper limits of -5.0 and +5.0 , respectively, were assumed. The intent of the uniform prior distribution was to provide weakly informative priors so that estimates of τ and γ would largely be influenced by the data, while ensuring a proper posterior distribution and avoiding individual effects getting stuck at extremely
high or low values. Given that these parameters influence relative recruitment on a logarithmic scale, the range of relative recruitments allowed by the uniform distribution is over 22,000 fold. For $\pi(\boldsymbol{v})$, a normal distribution with a mean of 0.0 and standard deviation of 3.0 was assumed. This too was intended to be weakly informative but with a tendency toward a zero estimate in the absence of other information. Thus, we treated the v as random effects from a shared stochastic process, with average levels (i.e., 0) being more likely than extreme ones. Preliminary evaluations suggested that with sufficiently large sample sizes from the mixture, the standard deviation for the normal prior distribution on $\pi(\boldsymbol{v})$ could be estimated as part of the model fitting process, but at smaller sample sizes models that attempted to estimate the standard deviation would not converge on a solution. We therefore elected to fix the standard deviation at a value (3.0) corresponding to a relatively uninformative prior distribution for \boldsymbol{v}.

Baseline simulations

Simulation factor levels.- Our simulation framework generated for a single simulation (1) expected genotype proportions by source and loci, (2) expected age compositions by source and sampling year, (3) observed genotype samples from the sources, and (4) observed genotype and age composition data from the mixture (Fig. 2, see Appendix A for technical details). Each individual simulation for a specific scenario was defined by specified inputs and produced different expected genotype proportions and different expected age compositions due to random factors such as number of loci, number of alleles for each locus, and temporal and spatial variation in recruitment, and given these expectations there was random variation in the resulting source and mixture data (Fig. 2). The estimation model was then applied to each set of simulated data (Fig. 2).

We used the simulation model to generate source and mixture observations under a range of conditions, including two numbers of sources (6 or 12 populations), three levels of genetic divergence (θ) among sources $\left(0.01,0.06\right.$, or varied $\left[\theta_{\text {High }}=0.051, \theta_{\text {Low }}=0.01\right]$, two levels of difference in the source effects (low or high), three levels of total temporal variation in (0.7, 1.0., or 2.0) (see Appendix A), three variation ratios (1:4, 1:1, 4:1) dictating how total temporal recruitment variation was allocated between the two sources of variation (e.g., $1: 4$ means 20% of total temporal variation was allocated to year-class variation and 80% was allocated to source \times year-class variation), two levels of sampling duration (two or six years), and three mixture sample sizes (100, 300, or 500 fish per year). Under a low difference in source effects, the source-specific deviations $\left(\tau_{i}\right)$ were set such that the largest difference in expected recruitment between any two sources contributing to the mixture would be 10 -fold (i.e., $\exp (\max (\boldsymbol{\tau})) / \exp (\min (\boldsymbol{\tau}))=10)($ Table 1$)$. Under a high difference in source effects, the τ_{i} values were set such that the largest difference in expected recruitment between any two sources contributing to the mixture would be 40 -fold (i.e., $\exp (\max (\tau)) / \exp (\min (\tau))=40)($ Table 1$)$.

We used a full factorial design so that all 648 combinations of factors levels were evaluated, with 1,000 simulations conducted for each factor-level combination. For all simulations, we assumed sample sizes of 200 fish per source for the calculations of allele relative frequencies, age 2 was the age of recruitment with ages of individuals collected from the mixture ranging from age 2 to age 9 , and that there was no aging error. Previous research found the source sample sizes ranging from 50 to 200 fish per source explained very little of the variability in genetic stock identification results (Brenden et al. 2015a), which was why we did not explore varying source sample sizes. The age range assumed in the simulations was arbitrary but was mid-range to the age ranges incorporated in stock assessment models used for managing lake
trout, walleye, Chinook salmon (Oncorhynchus tshawytscha) and lake whitefish (Coregonus clupeaformis) populations in the Great Lakes (Brenden et al. 2011; Berger et al. 2012; Brenden et al. 2012; Fielder and Bence 2014; Tsehaye et al. 2014). For each simulation, the number of loci used to genotype source and mixture fish was randomly selected from between 10 and 30 loci. Similarly, the number of alleles was randomly selected for each locus and simulation and could range from 5 to 25 alleles.

Models were fit by highest posterior density estimation, meaning that Markov Chain Monte Carlo (MCMC) procedures were not used to characterize the full posterior probability of the parameters. Highest posterior density estimation is also referred to as penalized maximum likelihood estimation. We chose to use this estimation approach because for the simulations a total of 648,000 models were fit and thus it was time prohibitive to conduct a full Bayesian estimation of the models. The objective function for the estimation models corresponded to the sum of the negative $\log _{e}$ likelihood (i.e., negative $\log _{e}$ of Equation 8) and prior probability distributions for the $\boldsymbol{\tau}, \boldsymbol{\gamma}$, and \boldsymbol{v}. As previously indicated, models were fit in AD Model Builder (Fournier et al. 2012). Models were considered to have converged on a solution when the maximum gradient of the parameters with respect to the objective function was less than 1.0E-3.

Performance measures.-For each simulation, we calculated the Pearson correlation between estimated and true $\log _{e}$ relative recruitments across all sources. A multifactor ANOVA model was fit to the correlations from the simulations to assess the importance of the investigated factors. We used eta-squared (η^{2}) values to estimates of the amount of variability in correlations accounted for by main effects and all main-effect interactions (i.e., up to seventh-order interactions) (Corell et al. 2012). The median and interquartile range (IQR) of the correlations in
the recruitment values from across all simulations conducted for a particular combination of factor levels were used as measures of accuracy and precision, respectively. Only factor level combinations (e.g., main factors, second-order interactions) that were identified as being important from the multifactor ANOVA η^{2} values were used in summarizing results.

Sensitivity analyses

Sensitivity of the estimation approach to errors in total mortalities and aging uncertainty was explored to assess robustness of the method. Based on the results of the baseline simulations (see below), sensitivity analyses were conducted for the two source numbers (6 or 12 sources), the three levels of genetic divergence among sources ($0.01,0.06$, or varied), and three mixture sample sizes (100, 300, or 500 fish). All sensitivity simulations assumed a two-year sampling duration, a high difference in source population effect, a total temporal variation in recruitment of 2.0, and a 4:1 ratio for how total temporal variation in recruitment was allocated between year-class and source \times year-class variation. As in the base simulations, we assumed sample sizes of 200 fish per source, ages of individuals collected from the mixture ranging from age 2 to age 9 , the number of loci used to genotype source and mixture fish was randomly selected from between 10 and 30 loci for each iteration, and the number of alleles was randomly selected for each locus and iteration and could range from 5 to 25 alleles.

In terms of sensitivity to incorrect assumptions regarding total mortality, we considered three different scenarios. In the first scenario (random mortality scenario), we randomly generated total mortalities for each source, year-class, and age from normal distributions with a mean of 0.30 and a standard deviation of 0.04 for simulation data. In the second scenario (autocorrelated mortality scenario), age-specific deviations in total mortalities from an average
rate of 0.30 for each source and year-class were generated from a first-order autoregressive process [AR(1)]. Values from an $\operatorname{AR}(1)$ process with a mean of 0.0 , autoregressive coefficient of 0.8 , and innovations variance of 0.15 were generated, exponentiated, and multiplied by 0.30 . In the third scenario (population mortality scenario), age-specific total mortalities for the sources were generated from normal distributions with means for the different sources ranging from 0.20 to 0.40 at equispaced intervals (0.04 interval for 6 sources; 0.0182 interval for 12 sources) and standard deviations of 0.04 . For each mortality sensitivity scenario, we continued to assume source- and age-specific total mortalities of 0.30 in the estimation program, meaning that we assessed the consequences on estimation performance when assumed mortalities were different (and more simplistic) than the mortality rates actually experienced by the source populations.

For aging uncertainty, we generated an aging error matrix based on the method of Richards et al. (1992) whereby the distribution of estimated ages given expected true ages was modeled through discretized normal distributions. Expectations of estimated age given true age were modeled as a linear function of true age with an intercept of 0 and a slope of 1.0 (Richards et al. 1992). The standard deviation of estimated ages (σ_{a}) was modeled as a linear function of the expected true age with an intercept of 0 and a slope of 0.06 (low aging error) or 0.10 (high aging error). With a slope of 0.06 , aging uncertainty ranged from 0% for younger ages to approximately 20% (i.e., 10% of individuals underestimated in age by and 10% overestimated in age) for older ages. With a slope of 0.10 , aging uncertainty ranged from 0% for younger ages to approximately 50% (i.e., 25% of individuals underestimated in age and 25% of individuals overestimated in age) for older ages. Observed ages of mixture individuals were assigned by random sampling from multinomial distributions with probabilities equal to the age frequencies generated from the aging error matrix. For estimating recruitment levels under the aging
uncertainty sensitivity scenarios, we considered situations where aging was assumed to be accurate in the estimation model (i.e., $T(a \mid b)$ set equal to an identity matrix) and where the actual aging error matrix generated from the discretized normal distribution process described above was incorporated in the estimation model.

As part of the aging uncertainty analyses, we found that with high aging error the incorporation of the actual aging error matrix performed worse than when aging was assumed to be accurate (see Sensitivity analyses results). This was most noticeable at small sample sizes. To verify that this result was a sample size issue, we conducted additional sensitivity simulations with mixture sample sizes as large as 3000 fish per year for high aging error to determine whether with large enough sample sizes the incorporation of the actual aging error matrix would perform better than when aging was assumed to be accurate.

Empirical applications

For the empirical applications, we used a full Bayesian approach for model estimation so as to better characterize uncertainty in relative recruitments for the sources. Posterior probability distributions of the relative recruitments for each source and year-class combinations were characterized by MCMC simulations through a Metropolis-Hastings algorithm (Fournier et al. 2012). For the walleye application (described below), five independent MCMC chains were run for 500,000 steps sampling every $100^{\text {th }}$ step, with the initial 2,500 saved steps discarded. For the lake trout application (described below), five independent MCMC chains were run for 5,000,000 steps sampling every $2,000^{\text {th }}$ step, with the initial 500 saved steps discarded. Different chain lengths and sampling frequencies were necessary because the lake trout model was slower to converge and exhibited greater autocorrelation in the chain values. For both the walleye and lake
trout examples, one of the MCMC chains was initialized at the mode of the posterior probability distributions for each parameter, whereas for the other four chains initialization values were randomly generated from uniform distributions with lower and upper bounds of -5 and 5, respectively, while imposing the zero-sum constraint on $\boldsymbol{\tau}, \boldsymbol{\gamma}$, and \boldsymbol{v} as described in the Estimation approach section. The random initialization values were generated in R (R Core Team 2014) using the RandVec function in the "Surrogate" package (Van der Elst et al. 2017). Convergence of each MCMC chain on stable distributions for all relative recruitments was evaluated graphically with trace plots and analytically with Z-score tests to test differences between the means of the first 10% and last 50% of the saved chains (Geweke 1992). Additionally, we compared effective sample size of the saved MCMC chains with the actual chain sample sizes as a method for evaluating autocorrelation among the saved samples. If each MCMC chain passed the convergence diagnostics, convergence of the five MCMC chains on the same stationary distribution was evaluated graphically by overlaying traceplots and analytically through potential scale reduction factors (Gelman and Rubin 1992). The saved iterations from the five MCMC chains were then combined and the median of the combined chains was used as the point estimates for the relative recruitments. Uncertainty in the relative recruitments was based on the 95\% highest posterior density intervals calculated across the combined MCMC chains. Similar conclusions would have been reached if we had used highest posterior density estimates (i.e., mode of the posterior distributions) as point estimates for the relative recruitments. All MCMC diagnostic measures were conducted in R using the "coda" package (Plummer et al. 2006).

Saginaw Bay, Lake Huron Walleye.-A description of the sampling and laboratory methods used on the Saginaw Bay, Lake Huron walleye mixture and contributing sources is provided in

Brenden et al. (2015b). Briefly, fin-clip tissue samples were collected from seven source populations located in Lakes Huron, St. Clair, and Erie. Multiple lines of evidence suggested there was just two genetically distinct sources [Lake Huron source (represented by fish from the Tittabawassee River) and a Lakes Erie/St. Clair source]. A total of 382 individuals from the sources were genotyped for the determination of allele frequencies (Lake Huron: $n=95$; Lakes Erie/St. Clair: $n=287$). Source tissue samples were genotyped at 10 microsatellite loci: Svi4, Svi17, Svi18 and Svi33 (Borer et al. 1999); SviL2, SviL5, SviL6 and SviL8 (Wirth et al. 1999); and Svi6 and Svi7 (Eldridge et al. 2002). Amplification conditions are described in Brenden et al. (2015b), as are results pertaining to number of alleles, allelic richness, and observed and expected heterozygosity.

Tissue samples from walleyes from the Saginaw Bay recreational fishery were collected in 2008 and 2009 between the months of February and August. Ages of individuals collected ranged from 3 to 15 . For this study, we limited our analysis to walleye from the mixture that were between age 3 and age 7 and that were collected between June to August. The oldest walleye collected in 2008 was age 6 so based on available data we were able to index recruitment for the 2002 to 2006 year classes. Tissue samples were available for a total of 262 individuals from the mixture (2008: $n=138$ fish; 2009: $n=124$ fish). We did not include walleye collected between February and May as based on the results of Brenden et al. (2015b) there were potential differences in migration rates between young and old walleye from the Lakes Erie/St. Clair sources during these months, which would have influenced recruitment results. Mixture tissue samples were genotyped using the same 10 microsatellite loci identified above for the sources. Total instantaneous mortality rates for the corresponding year class and ages for the
sources were taken from Fielder and Bence (2014) and WTG (2014) and we assumed that aging error was negligible.

Estimated recruitment levels of the walleye source populations from our estimation approach for the 2002 to 2006 year classes were compared to corresponding recruitment estimates from SCAA models developed by Fielder and Bence (2014) for Lake Huron and WTG (2014) for Lake Erie. Comparisons between recruitment levels were based on Pearson correlations.

Northern Lake Michigan Lake trout.-As previously indicated, the source data for the lake trout empirical application consisted of different hatchery strains that have been stocked in Lake Michigan. An in-depth description of the hatchery source data and genotyping is provided in Appendix B. For these analyses, there were four hatchery strains for which there was sufficient information to distinguish among them. These hatchery strains were Lewis Lake, Seneca Lake, Green Lake, and Lake Superior. The Lake Superior hatchery strain was an aggregation of four separate hatchery strains derived from sources in Lake Superior (Isle Royale, Apostle Island, Marquette, Traverse Island) for which there was difficulty differentiating between given available data (Appendix B). A total of 669 individuals from the strains were genotyped for the determination of allele frequencies (Lewis Lake: $n=98$; Seneca Lake: $n=101$; Green Lake: $n=100$; Lake Superior: $n=370$). Hatchery strain tissue samples were genotyped at 10 microsatellite loci: Sfo1, Sfo12, and Sfo18 (Angers et al. 1995); Scou19 (Taylor et al. 2001); One $\mu 9$ and One 10 (Scribner et al. 1996); Ogo1a (Olsen et al. 1998); Ssa85 (O'Reilly et al. 1996); and Sfo-C24 and Sfo-D75 (King et al. 2012).

The mixture samples for the lake trout application came from fin tissue samples collected during fishery independent surveys and commercial fishery operations in the MM3 statistical district in northern Lake Michigan (Fig. 2). Tissue sample were collected between the months of April and September in 2009 and 2010. Mixture tissue samples were genotyped using the same 10 microsatellite loci identified above for the hatchery strains. We restricted our analyses to lake trout ranging in age from 2 to 7 . The oldest lake trout collected in 2009 was age 6 so based on available data we were able to index recruitment for the 2003 to 2008 year classes. Ages were assigned to lake trout through either scale readings or based on identifying fin clips (i.e., all lake trout stocked in Lake Michigan in a given year are given a particular combination of fin clips). Tissue samples were available for a total of 514 individuals from the mixture (2009: $n=150$ fish; 2010: $n=364$ fish). For this analysis, we assumed that lake trout aging error was negligible.

Age-specific mortality rates for the estimation model were taken from an SCAA model that is used for setting allowable harvests in the management unit (Modeling Subcommittee, Technical Fisheries Committee 2014). Past research has suggested that lake trout hatchery strains may experience differential survival possibly as a consequence of strain-specific differences in avoidance of sea lamprey Petromyzon marinus parasitism (Elrod et al. 1995, McKee et al. 2004). While we do not discount the possibility of strain-specific differences in survival, strain-specific estimates of mortality rates for lake trout in Lake Michigan were not available to incorporate in this analysis.

Estimated recruitment levels of the lake trout hatchery strains from our estimation approach was compared to the total number of lake trout stocked by hatchery strain for the corresponding year classes we were able to index. The stocking information were from the Great Lakes Fish Stocking Database (FWS/GLFC 2010). Although the lake trout mixture data were
from northern Lake Michigan, we considered stocking that occurred throughout Lake Michigan given previous studies have found high dispersal rates of stock lake trout in the Great Lakes (Adlerstein et al. 2007).

Results

Baseline simulations

The η^{2} values obtained from the multifactor ANOVA model fit to the correlations between estimated and true $\log _{e}$ relative recruitments indicated that main effects had the largest influence on simulation results. The largest η^{2} values for main effects were due to mixture sample size ($\eta^{2}=23.6 \%$), number of sources ($\eta^{2}=15.1 \%$), and genetic divergence among the source populations ($\eta^{2}=13.8 \%$). Conversely, η^{2} values were 6.0% for duration of sampling, 2.0% for level of difference in source effects, 1.3% for total temporal recruitment variation, and 1.1% for how total temporal recruitment variation was allocated between year-class and source \times year-class variation. The largest η^{2} values for second- or higher-order interactions among main effects was 0.1%, with the vast majority of values being less than 0.01%, suggesting that interactions among main effects were unimportant. Consequently, we chose to summarize correlation results from the simulations only by main effect-factor levels.

Overall, the estimation approach performed well in estimating recruitment levels for the sources. Across all simulations, the median correlation between estimated and true $\log _{e}$ recruitment levels for the sources was 0.849 , with 2.5 and 97.5 percentile in correlations equal to 0.613 and 0.951 , respectively. The correlation between estimated and true recruitment levels on a non-logarithmic scale was even greater (median correlation $=0.938 ; 2.5$ and 97.5 percentile in
correlations equal to 0.659 and 0.994). As was expected, performance of the estimation approach both with respect to accuracy and precision improved as mixture sample sizes and genetic divergence among the sources increased. Median correlations in $\log _{e}$ recruitment levels were $0.788,0.860$, and 0.887 for mixture samples sizes of 100,300 , and 500 fish per year, respectively, whereas IQR in correlations were $0.127,0.093$, and 0.080 for these same sample sizes (Fig. 3). As genetic divergence among the sources increased from 0.01 to 0.06 , median correlations in $\log _{e}$ recruitment increased from 0.810 to 0.887 , whereas IQR in correlations decreased from 0.127 to 0.080 (Fig. 3). The varied genetic divergence level in which each source had relatively low levels of genetic divergence with some of the sources and relatively high levels of genetic divergence with the other sources had accuracy and precisions levels that were intermediate of the results for 0.01 and 0.06 genetic divergences (Fig. 3).

As number of simulated sources increased, the accuracy and precision of the estimation approach decreased (6 sources: median correlation $=0.882 ; \mathrm{IQR}$ in correlations $=0.087 ; 12$ sources: median correlation $=0.814 ; \mathrm{IQR}$ in correlations $=0.118)($ Fig. 3). Conversely, the accuracy and precision of the estimation approach increased as sampling duration increased (2 year duration: median correlation $=0.828 ; \mathrm{IQR}$ in correlations $=0.124 ; 6$ year duration: median correlation $=0.868 ;$ IQR in correlations $=0.097)($ Fig. 3). Likewise, accuracy and precision improved with increasing level of difference in source effects and total temporal variation in recruitment. Median correlations in $\log _{e}$ recruitment were 0.835 and 0.863 and IQR in correlations were 0.116 and 0.105 for low and high differences in source population effects, respectively (Fig. 3). Median correlations in $\log _{e}$ recruitment were $0.839,0.847$, and 0.860 and IQR in correlations were $0.122,0.114$, and 0.103 for total temporal variations in recruitment of $0.7,1.0$, and 2.0 , respectively (Fig. 3).

Accuracy and precision decreased slightly when total temporal variation in recruitment was allocated more to source \times year-class variation than to year-class variation (Fig. 3). When the allocation ratio between year-class class variation and source \times year-class variation was 1:4 (i.e., 20% of total variation allocated to year-class variation and 80% of total variation allocated to source \times year-class variation), the median correlation and IQR in correlations were 0.837 and 0.122 , respectively. Conversely with a $1: 1$ ratio the median correlation and $I Q R$ in correlations were 0.850 and 0.111 , respectively, and were 0.860 and 0.104 for a $4: 1$ ratio (Fig. 3).

Sensitivity analyses

Accuracy and precisions of the proposed estimation approach were insensitive to the mortality scenarios that we considered as part of our sensitivity evaluations. Median correlations and interquartile ranges in the correlations for these sensitivity scenarios deviated very little from baseline simulation runs (Fig 3).

The estimation approach was insensitive to low aging error (i.e., the standard deviation of estimated ages was modeled as a linear function of the expected true age with an intercept of 0 and a slope of 0.06) regardless of whether aging was assumed to be accurate or whether the actual aging error matrix was incorporated in the estimation model (Fig. 4). For the scenario with high aging error (i.e., the standard deviation of estimated ages was modeled as a linear function of the expected true age with an intercept of 0 and a slope of 0.10), results depended on how aging error was treated in the estimation model. When accurate aging was assumed in the estimation model, median correlation in $\log _{e}$ recruitment declined by 0.03 to 0.05 and the interquartile range in correlations increased by 0.01 to 0.02 across the range of evaluated factors for the simulations (Fig. 4). When the actual aging error matrix was incorporated in the
estimation model, performance of the estimation approach with respect to both accuracy and precision was worse compared to when aging was assumed to be accurate at small mixture sample sizes (Fig. 4). At the smallest mixture sample sizes, median correlation in $\log _{e}$ recruitment declined by as much as 0.09 across the range of evaluated factor. With larger mixture sample sizes, accuracy of the estimation approach when the actual aging error matrix was incorporated in the approach was similar to when accurate aging was assumed (Fig. 4). Precision of the estimation approach as measured by the interquartile range of the correlations also improved with larger mixture sample sizes, although in all cases precision was worse than when accurate aging was assumed (Fig. 4). In the follow-up simulations with mixture sample sizes as large as 3,00 fish per hear, we found that incorporating the actual aging error matrix in the estimation approach resulted in more accurate and precise estimates of $\log _{e}$ recruitment levels compared to when accurate aging was incorrectly assumed in the estimation model (results not shown).

Empirical applications

Saginaw Bay, Lake Huron Walleye.-All five MCMC chains were judged to have converged on stationary and stable distributions for the relative recruitments for each source and year-class combination. Examination of trace plots indicated that each of the MCMC chains were well mixed for each relative recruitment estimate (Appendix C), and the Z-score test statistics ranged from approximately -1.72 to 1.88 . Effective sample sizes of the MCMC chains for all relative recruitments were greater than 2,100. Overlaying the traceplots for all five MCMC chains suggested that the chains had converged on the same stationary distributions for the relative recruitments for each source and year-class combination (Appendix C). Additionally, the upper
95% confidence interval for the potential scale reduction factors calculated from the five MCMC chains for all relative recruitments was less than 1.1, suggesting that all chains had converged on the same stationary distributions. Effective sample sizes for the combined MCMC chains for all relative recruitments were greater than 10,900 .

The pattern in relative recruitments that were generated from our estimation approach for Lake Huron closely corresponded with the recruitment estimates from the SCAA model by Fielder and Bence (2014) for the 2002 to 2006 year classes. The correlation between recruitment estimates was 0.921 . Recruitment levels from both models increased from 2002 to 2003, but then decreased steadily from 2003 to 2006 (Fig. 5). There was also fairly strong correspondence in the estimated recruitments for Lakes Erie/St. Clair, although the correlation in recruitment levels for this source was 0.567 (Fig. 5). Our proposed approach predicted recruitment increased from 2002 to 2004 and then declined from 2004 to 2006. The SCAA model estimated a sharp increase in recruitment from 2002 to 2003 and an overall decline in recruitment from 2003 to 2006. Whereas our approached predicted that the recruitment level in 2004 was comparable to that of 2003, the SCAA model for Lakes Erie/St. Clair predicted that recruitment in 2004 was the second lowest of the time series (Fig. 5).

Northern Lake Michigan Lake trout.- All five MCMC chains converged on stationary and stable distributions for the relative recruitments for each source and year-class combination. Examination of trace plots indicated that each of the MCMC chains were well mixed for each relative recruitment estimate (Appendix C), and the Z-score test statistics ranged from approximately -1.23 to 1.88 . Effective sample sizes of the MCMC chains for all relative recruitments were greater than 1,300 . Overlaying the traceplots for all five MCMC chains
suggested that the chains had converged on the same stationary distributions for the relative recruitments for each source and year-class combination (Appendix C). Additionally, the upper 95% confidence interval for the potential scale reduction factors calculated from the five MCMC chains for all relative recruitments was less than 1.1, suggesting that all chains had converged on the same stationary distributions. Effective sample sizes for the combined MCMC chains for all relative recruitments were greater than 8,000 .

Correspondence between recruitment estimates of the lake trout hatchery strains and the actual stocking levels in Lake Michigan differed by strain. The strongest correspondence between relative recruitments and stocking levels was for the Lewis Lake strain. The correlation between estimated recruitments and stocking levels for the Lewis Lake strain was 0.444 , with the greatest discrepancy occurring for the 2007 year class (Fig 6). Our estimation approach predicted increased recruitments from 2003 to 2005, but decreased recruitments from 2005 to 2008. Conversely, the actual stocking rate of this hatchery strain for these year classes was fairly static between 2003 and 2007 and then decreased in 2008. For the Lake Superior strain, the correlation between estimated recruitment and stocking level was 0.334 . Our estimation approach predicted recruitment levels increased from 2003 to 2004 but then decreased from 2004 to 2008 (Fig. 6), whereas the stocking rate for this hatchery strain increased from 2003 to 2006 and then decreased from 2006 to 2008. For the Seneca Lake hatchery strain, there was a negative correlation (-0.278) between our estimated recruitment levels and the stocking levels for this strain, although this negative correlation was largely a result of a large difference between relative recruitment and stocking level for the 2008 year class (Fig. 6). For the Green Lake strain, there also was a negative correlation (-0.529) between relative recruitments and stocking
levels. Whereas the stocking levels of this hatchery strain decreased from 2003 to 2008, our estimation approach predicted slightly elevated recruitments in 2006 and 2007 (Fig. 6).

Discussion

Several quantitative approaches for indexing historical recruitment levels based exclusively on sampling of adult fish have been proposed and applied to fish populations (Guy and Willis 1995; Maceina 1997; Isermann et al. 2002; Tsehaye et al. 2016). The methodological approach proposed herein is similar to that of Tsehaye et al. (2016) in that it is meant for indexing recruitment for several sources simultaneously, which can provide beneficial information for management, as preserving genetic diversity is important for promoting resilience of populations to perturbations (Stephenson 1999). Both our approach and that of Tsehaye et al. (2016) are based on incorporating age or surrogates of age in commonly used model-based GSI methods. Thus, a prerequisite for both approaches is the availability of DNA markers that can be used to genotype individuals from both sources and mixtures. While this at one time may have been problematic, the development and widespread use of high throughput markers, such as single nucleotide polymorphisms (SNPs), have made it possible to easily identify large numbers of loci and cost-efficiently characterize variation in these loci for many individuals (Larson et al. 2014). Thus, our proposed approach, as well as that of Tsehaye et al. (2016), has the potential for broad applicability considering that the occurrence of intermixed fisheries is increasingly being recognized as a common feature in both marine and freshwater fish populations (Policansky and Magnuson 1998; Kerr et al. 2010; Brenden et al. 2015b).

Our proposed approach differs from that of Tsehaye et al. (2016) primarily in the assumed underlying dynamics of the source populations. The approach of Tsehaye et al. (2016)
was described as being applicable to long-lived species that spawn intermittently and that experience high mortality rates during early life stages, but that have low mortality rates after these critical early life periods. Such life histories were identified as likely to result in year-class strength changing fairly consistently on an annual basis. However, for many other species, recruitment levels can exhibit considerable inter-annual variation. For example, in Lake Erie walleye, 10 -fold differences in estimated recruitment levels in adjacent years are common, and in some years differences in recruitment levels can be nearly 200-fold (WTG 2014). The approach we have proposed herein is intended for cases such as these, although there is nothing that would preclude its use in situations where recruitment levels changed consistently on an annual basis so long as sufficient data were available to index individual year classes. In describing their approach, Tsehaye et al. (2016) included situations where ages of individuals from mixtures were not available so lengths of individuals along with information on growth relationships for the sources were used as surrogates for age. The basis for this was that with long-lived and low mortality populations it might be difficult to obtain age estimates of from the mixture because it would require sacrificing individuals from the mixture, which might be problematic from a conservation perspective (Tsehaye et al. 2016). The estimation approach described herein could similarly be expanded to incorporate situations of using length as a surrogate if age estimates were difficult to obtain from fish collected from the mixture.

The simulations that were conducted as part of this research indicated that across a range of conditions, recruitment estimates from our estimation approach were strongly correlated with simulated recruitment levels. Both accuracy and precision of the recruitment estimates were influenced by mixture sample size and levels of genetic divergence among the sources. These same factors have been found to have the greatest influence on the performance of standard GSI
models (Brenden et al. 2015a). Our proposed estimation approach is an extension of standard GSI models so this finding is perhaps not surprising. Accuracy and precision decreased when more source populations were incorporated in analyses, which we attribute to there being simply more opportunities for mistakes to arise when assigning individuals to sources. A longer sampling duration also improved accuracy and precision of the estimation approach. We attribute this finding to a longer sampling duration increasing the number of observations of the year classes upon which to make inference. For example, with a six-year sampling duration, the youngest year class in the first year of sampling will be able to be followed through to older ages with each subsequent year of sampling, which results in more accurate estimates of initial recruitment levels. We found that the approach was relatively unaffected by factors such as total temporal variation, how temporal variation was allocated between year-class and source \times yearclass interaction variation, and level of difference in source effects. The insensitivity to these factors is encouraging as in actual applications it would be difficult to know what these factors were prior to analyses, so it would be difficult to control for them. Conversely, mixture sample size and sampling duration can be adjusted as needed, while genetic divergence between sources can be assessed ahead of time.

The sensitivity analyses that we conducted as part of this research indicated that the estimation approach was robust to assumptions about total mortality, but that large aging error could influence recruitment estimates. The largest aging error we considered in our sensitivity analyses was a case where only $\sim 50 \%$ of older fish were accurately aged. Even for this scenario, median recruitment correlations were in all cases greater than 0.60 suggesting that even with this level of aging uncertainty there was still a fairly strong association between estimated and assumed recruitment levels. We considered two approaches in our sensitivity analyses involving
aging error: one where aging was assumed to be accurate and one where the actual aging error matrix used to simulate observations from the mixture was incorporated in the estimation approach. Assuming that aging was accurate performed better at small mixture sample sizes, but at larger mixture sample sizes the two approaches performed similarly with respect to accuracy. At very high sample sizes, incorporating the actual aging error matrix that was used to simulate the mixture fishery data resulted in estimates that were very similar to simulations where no aging error occurred. Our explanation for why incorporating the actual aging error matrix used to simulate the mixture fishery data performed poorly at low mixture sample sizes samples is that with small samples the amount of aging error observed in the simulated mixture data could be considerably different from the actual aging error matrix because of the stochasticity in the generating process. Conversely, as mixture sample size increased, there was closer agreement between the observed aging error and the actual aging error matrix used to simulate the data. This result suggests there may be danger in simply assuming an aging error matrix and that if there is concern about error then age validation should be conducted for samples collected from the mixture. As well, with small sample sizes older age classes may be uncommon in the mixture and the incorporating of errors may make these observations highly influential data points. This, an additional option for dealing with high aging uncertainty would be to restrict analyses to younger fish that can presumably be aged with greater accuracy and perhaps sample over longer durations. Other quantitative approaches for indexing recruitment levels based on sampling of adult fish (e.g., Isermann et al. 2002) can also be affected by aging uncertainty, so the sensitivity of our proposed estimation approach to high levels of aging error should not be construed as a major hindrance to its adoption.

The empirical applications of our estimation approach found that there was close agreement between our recruitment estimates and recruitment estimates from SCAA models for walleye from Lake Huron and Lake Erie. However, the level of agreement between our estimates and the stocking history for Lake Michigan for the lake trout example varied among the hatchery strains. The discrepancy between our recruitment estimates and stocking level of the hatchery strains is perhaps not surprising given stocking history and past research into ecological differences among different hatchery strains. The stocking history of lake trout strains in the Great Lakes is complex. Individual strains are stocked at different locations throughout the lake, multiple strains are stocked at individual sites, and both fall fingerlings and spring yearlings are stocked (FWS/GLFC 2010). Additionally, previous research on lake trout movement in the Great Lakes has found dispersal rates from stocking sites to vary by area (Adlerstein et al. 2007), between fall fingerlings and spring yearlings (Elrod 1987), and between strains (Elrod 1987; Elrod et al. 1996a) and for habitat selection to differ between strains (Elrod et al. 1996b). Additionally, mortality rates of hatchery strains may differ (McKee et al. 2004) possibly due to differences in growth (Elrod et al. 1996b; McKee et al. 2004) and/or vulnerability and susceptibility to attacks by sea lamprey Petromyzon marinus (Schneider et al. 1996). Large-scale ecosystem changes in the Great Lakes, including major reductions in prey fish population abundances in Lake Huron (Riley et al. 2008), also may be contributing to greater movement of piscivores from Lake Huron to Lake Michigan (Clark et al. 2016). There is also the potential for errors or omissions in the stocking database from the which the strain-specific stocking numbers were compiled (FWS/GLFC 2010). Consequently, the total number of lake trout stocked of a particular year class and hatchery strain in Lake Michigan in and of itself is likely not representative of actual recruitment levels for the strains.

Our proposed estimation approach makes several assumptions and prior to its application consideration should be given to their appropriateness. As with most model-based GSI approaches, our approach assumes that the sources are in Hardy-Weinberg equilibrium. If the source deviate from this assumption, then actual genotype frequency of individuals in the mixture may deviate from expectation and this could influence recruitment estimates. Therefore, sources should be tested for deviations from Hardy-Weinberg equilibrium prior to application of our approach. An additional implicit assumption is that source-specific migration rates to the mixture do not vary by age. As well, if individuals are collected from the mixture in more than one sampling year, then the approach assumes that movement rates do not vary temporally. If movements do vary by age or time, than recruitment estimates could be affected. If external estimates of movement rates are available, than these rates could be incorporated in the mathematical representation of the underlying population-specific processes affecting abundance levels. Unless there is interest in making inter-population recruitment comparisons, knowing how sources differ with respect to migration rates to the mixture is not necessary, although again these rates could be incorporated in order for such comparisons to be conducted. Similarly, the estimation approach assumes that vulnerability to the sampling gear used to collect individuals from the mixture does not differ by age or over time although if external estimates of vulnerability were available they could be incorporated in the model. As described here, the approach assumes that all sources contributing to the mixture are included in the analysis. We envision our proposed approach could be expanded to account for the possibility of unknown sources contributing individuals to mixtures similar to how regular genetic stock identification models have been expanded to account for this potential (Smouse et al. 1990; Prichard et al. 2000; Pella and Masuda 2006).

In conclusion, the estimation approach described and evaluated in this research is a general approach for evaluating relative recruitment levels of sources contributing to mixtures. It is based on the incorporation of ages in GSI models and can accommodate aging uncertainty, and could be expanded to use length as a surrogate for age or to accommodate the possibility of unknown sources. Although the specific applications we illustrate only evaluate within-source recruitment levels of populations that move to a common mixture, recruitment of sources relative to each other could also be addressed if additional information (e.g., rates of movement) were available. The approach is applicable to situations in which a full integrated stock assessment making use of genetic mixture data, is not feasible. We believe this will be common, given that often the time-series data needed for an integrated assessment is not available for all regions substantial numbers of fish migrate to for each source contributing to a particular mixture, and genetic data may also not be available for all such regions. The potential use of genetic data in full integrated stock assessments has been recognized (Spies and Punt 2015). While the probability equations we present for source genotype data and the joint age and genotype data for mixtures could be adapted for use in full integrated spatial stock assessments, we believe the capability for applications to estimating recruitment trends in the absence of the data needed for such assessments is a valuable contribution in its own right. The approach was found to provide accurate relative recruitment levels across a range of factor levels with mixture sample size and genetic divergence having the largest influence on performance results. Accuracy was reduced by high aging error aging. One strategy for reducing the consequences of aging error is to reduce the age range of individuals from the mixture that are incorporated in the analyses. We are of the opinion that this estimation approach could be applied in a variety of situations where sources are contributing individuals to mixtures and thus could be a widely applicable tool for managing
fish populations based on recreational, commercial, or assessment collections from mixed fisheries.

Acknowledgements

This research was partially funded by Great Lakes Fishery Trust project 2009.1080. Additional funding was provided by the Michigan Department of Natural Resources and other contributing partners of the Michigan State University Quantitative Fisheries Center. The authors thank W. Liu for his involvement in programming the simulation and estimation models. The authors acknowledge A. Cook, K. Donner, M. Ebener, D. Fielder, J. Jonas, T. Kolb, S. Lennart, K. Molton, C. Radek, C. Schelb, M. Thomas, and C. Vandergoot for their assistance in the project. Computational work in support of this research was performed at Michigan State University's High Performance Computing Center. This is publication 20YY-XX of the Quantitative Fisheries Center. AD Model Builder code used for estimation and simulation can be downloaded from figshare doi:XXXXXXXXXXX.

References

Adlerstein, S.A., Rutherford, E.S., Clevenger, J.A., Johnson, J.E., Clapp, D.F., and Woldt, A.P. 2007. Lake trout movements in U.S. waters of Lake Huron interpreted from coded wire tag recoveries in recreational fisheries. J. Great Lakes Res. 33(1):186-201. doi:10.3394/0380-1330(2007)33[186:LTMIUW]2.0.CO;2.

Angers, B., L. Bernatchez, A. Angers, and L. Desgroseillers. 1995. Specific microsatellite loci for brook charr reveal strong population subdivision on a microgeographic scale. J. Fish Biol. 47(Supplement A):177-185. doi:10.1111/j.1095-8649.1995.tb06054.x.

Berger, A.M., Jones, M.L., Zhao, Y., and Bence, J.R. 2012. Accounting for spatial population structure at scales relevant to life history improves stock assessment: the case for Lake Erie walleye Sander vitreus. Fish. Res. 115-116(1):44-59. doi:10.1016/j.fishres.2011.11.006.

Bjorndal, K.A., and Bolten, A.B. 2008. Annual variation in source contributions to a mixed stock: implications for quantifying connectivity. Mol. Ecol. 17(2):2185-2193. doi: 10.1111/j.1365-294X.2008.03752.x.

Borer, S.O., Miller, L.M., and Kapuscinski, A.R. 1999. Microsatellites in walleye Stizostedion vitreum. Mol. Ecol. 8(2):336-338. doi:10.1046/j.1365-294X.1999.00534.x.

Brenden, T.O., Bence, J.R., Lantry, B.F., Lantry, J.R., and Schaner, T. 2011. Population dynamics of Lake Ontario lake trout during 1985-2007. N. Am. J. Fish. Manage. 31(5):962-979. doi:10.1080/02755947.2011.635241.

Brenden, T.O., Bence, J.R., and Szalai, E.B. 2012. An age-structured integrated assessment of Chinook salmon population dynamics in Lake Huron's main basin since 1968. Trans. Am. Fish. Soc. 141(4):919-933. doi:10.1080/00028487.2012.675910.

Brenden, T.O., Bence, J.R., Liu, W., Tsehaye, I., and Scribner, K.T. 2015a. Comparison of the accuracy and consistency of likelihood-based estimation routines for genetic stock identification. Methods Ecol. Evol. 6(7):817-827. doi:10.1111/2041-210X.12377.

Brenden, T.O., Scribner, K.T., Bence, J.R., Tsehaye, I., Kanefsky, J., Vandergoot, C.S., and Fielder, D.G. 2015b. Contributions of Lake Erie and Lake St. Clair walleye populations
to the Saginaw Bay, Lake Huron recreational fishery: evidence from genetic stock identification. N. Am. J. Fish. Manage. 35(3):567-577. doi:/10.1080/02755947.2015.1020079.

Clark, R.D., Jr., Bence, J.R., Claramunt, R.M., Johnson, J.E., Gonder, D., Legler, N.D., Robillard, S.R., and Dickinson, B.D. 2016. A spatially explicit assessment of changes in Chinook salmon fisheries in Lakes Michigan and Huron from 1986 to 2011. N. Am. J. Fish. Manage. 36(5):1068-1083. doi:10.1080/02755947.2016.1185060.

Corander, J., Marttinen, P., and Mäntyniemi, S. 2006. A Bayesian method for identification of stock mixtures from molecular marker data. Fish. Bull. 104(4):550-558. Available from http://fishbull.noaa.gov/1044/corander.pdf [accessed 9 December 2016].

Corell, H., Moksnes, P.O., Engqvist, A., Döös, K., and Jonsson, P.R. 2012. Depth distribution of larvae critically affects their dispersal and the efficiency of marine protected areas. Mar. Ecol. Prog. Ser. 467(1):29-46. doi:10.3354/meps09963.

Eldridge, W.H., Bacigalupi, M.D., Adelman, I.R., Miller, L.M., and Kapuscinski, A.R. 2002. Determination of relative survival of two stocked walleye populations and resident natural-origin fish by microsatellite DNA parentage assignment. Can. J. Fish. Aquat. Sci. 59(2):282-290. doi:10.1139/f02-007.

Elrod, J.H. 1987. Dispersal of three strains of hatchery-reared lake trout in Lake Ontario. J. Great Lakes Res. 13(2):157-167. doi:10.1016/S0380-1330(87)71639-6.

Elrod, J.H., O’Gorman, R., Schneider, C.P., and Schaner, T. 1996a. Geographical distributions of lake trout strains stocked in Lake Ontario. J. Great Lakes Res. 22(4):871-883. doi:10.1016/S0380-1330(96)71008-0.

Elrod, J.H., O’Gorman, R., and Schneider, C.P. 1996b. Bathythermal distribution, maturity, and growth of lake trout strains stocked in U.S. waters of Lake Ontario, 1978-1993. J. Great Lakes Res. 22(3):722-743. doi:10.1016/S0380-1330(96)70992-9.

Elrod, J.H., O’Gorman, R., and Schneider, C.P., Eckert, T.H., Schaner, T., Bowlby, J.N., and Schleen, L. P. 1995. Lake trout rehabilitation in Lake Ontario. J. Great Lakes Res. 21(Supplement 1):83-107. doi:10.1016/S0380-1330(95)71085-1.

Fielder, D.G., and Bence, J.R. 2014. Integration of auxiliary information in statistical catch-atage (SCA) analysis of the Saginaw Bay stock of Walleye in Lake Huron. N. Am. J. Fish. Manage. 34(5):970-987. doi:10.1080/02755947.2014.938141.

Fogarty, M.J. 1993. Recruitment in randomly varying environments. ICES J. Mar. Sci. 50(3):247-260. doi:10.1006/jmsc.1993.1027.

Fournier, D.A., Skaug, H.J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M., Nielsen, A., and Sibert, J. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27(2):233-249. doi:10.1080/10556788.2011.597854.

Frank, K.T., and Brickman, D. 2000. Allee effects and compensatory population dynamics within a stock complex. Can. J. Fish. Aquat. Sci. 57(3): 513-517. doi:10.1139/f00-024.

FWS/GLFC (U.S. Fish and Wildlife Service and Great Lakes Fishery Commission). 2010. Great Lakes fish stocking database. USFWS, Region 3 Fisheries Program, and GLFC, Ann Arbor, Michigan. Available from http://www.glfc.org/fishstocking/. [accessed 8 August 2017].

Gelman, A., and Rubin, D.B. 1992. Inference from iterative simulation using multiple sequences. Stat. Sci. 7(4):457-511. doi10.1214/ss/1177011136.

Geweke, J. 1992. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. Edited by J. M. Bernado, J. O. Berger, A. P. Dawid, and A. F. M. Smith. Bayesian Statistics 4. Oxford University Press, Oxford. pp. 169-193 doi:10.1.1.27.2952.

Guan, W., Cao, J., Chen, Y., and Cieri, M. 2013. Impacts of population and fishery spatial structures on fishery stock assessment. Can. J. Fish. Aquat. Sci. 70(8):1178-1189. doi:10.1139/cjfas-2012-0364.

Guy, C.S., and Willis, D.W. 1995. Population and characteristics of black crappies in South Dakota waters: a case for ecosystem-specific management. N. Am. J. Fish. Manage. 15(4):754-765. doi:10.1577/1548-8675(1995)015<0754:PCOBCI>2.3.CO;2.

Hansen, G.J.A., Carpenter, S.R., Gaeta, J.W., Hennessy, J.M., and Vander Zanden, M.J. 2015. Predicting walleye recruitment as a tool for prioritizing management actions. Can. J. Fish. Aquat. Sci. 72(5):661-672. doi:10.1139/cjfas-2014-0513.

Hewitt, D.A., Lambert, D.M., Hoenig, J.M., Lipcius, R.N., Bunnell, D.B., and Miller, T.J. 2007. Direct and indirect estimates of natural mortality for Chesapeake Bay blue crab. Trans. Am. Fish. Soc. 136(4):1030-1040. doi:10.1577/T06-078.1.

Hilborn, R., and Walters, C.J. 1992. Quantitative fisheries stock assessment: choice, dynamics, and uncertainty. Chapman and Hall, New York. 570 pp.

Hutchings, J.A. 1996. Spatial and temporal variation in the density of northern cod and a review of hypotheses for the stock's collapse. Can. J. Fish. Aquat. Sci. 53(5):943-962. doi:10.1139/f96-097.

Hutchings, J.A. 2000. Collapse and recovery of marine fishes. Nature 406:882-885. doi:10.1038/35022565.

Isermann, D.A., McKibbin, W.L., and Willis, D.W. 2002. An analysis of methods for quantifying crappie recruitment variability. N. Am. J. Fish. Manage. 22(4):1124-1135. doi:10.1577/15488675(2002)022<1124:AAOMFQ>2.0.CO;2.

Kerr, L.A., Cadrin, S.X., and Secor, D.H. 2010. Simulation modelling as tool for examining the consequences of spatial structure and connectivity on local and regional population dynamics. ICES J. Mar. Sci. 67(2):1631-1639. doi: 10.1093/icesjms/fsq053.

King, T.L., Lubinski, B.A., Burnham-Curtis, M.K., Stott, W., and Morgan, R.P. 2012. Tools for the management and conservation of genetic diversity in brook trout (Salvelinus fontinalis): tri- and tetranucleotide microsatellite markers for the assessment of genetic diversity, phylogeography, and historical demographics. Conserv. Genet. Resour. 4(3):539-543. doi:10.1007/s12686-012-9603-z.

Larson, W.A., Seeb, J.E., Pascal, C.E., Templin, W.D., and Seeb, L.W. 2014. Single-nucleotide polymorphisms (SNPs) identified through genotyping-by-sequencing improve genetic stock identification of Chinook salmon (Oncorhynchus tshawytscha) from western Alaska. Can. J. Fish. Aquat. Sci. 71(5):698-708. doi:10.1139/cjfas-2013-0502.

Li, Y., Bence, J.R., and Brenden, T.O. 2015. An evaluation of alternative assessment approaches for intermixing fish populations: a case study with Great Lakes lake whitefish. ICES J. Mar. Sci. 72(1):70-81.doi:10.1093/icesjms/fsu057.

Ludsin, S.A., DeVanna, K.M., and Smith, R.E.H. 2014. Physical-biological coupling and the challenge of understanding fish recruitment in freshwater lakes. Can. J. Fish. Aquat. Sci. 71(5):775-794. doi:10.1139/cjfas-2013-0512.

Mace, P.M. 1994. Relationships between common biological reference points used as thresholds and targets of fisheries management strategies. Can. J. Fish. Aquat. Sci. 51(1):110-122.doi:10.1139/f94-013.

Maceina, M.J. 1997. Simple application of using residuals from catch-curve regressions to assess year-class strength in fish. Fish. Res. 32(2):115-121. doi:10.1016/S0165-7836(97)000519.

McKee, P.C., Toneys, M.L., Hansen, M.J., and Holey, M.E. 2004. Performance of two strains of lake trout stocked in the midlake refuge of Lake Michigan. N. Am. J. Fish. Manage. 24(4):1101-1111. doi:10.1577/M03-142.1.

Miller, T.J. 2007. Contribution of individual-based coupled physical-biological models to understanding recruitment in marine fish populations. Mar. Ecol. Prog. Ser. 347(1):127138. doi:doi:10.3354/meps06973.

Modeling Subcommittee, Technical Fisheries Committee. 2014. Technical Fisheries Committee Administrative Report 2014: Status of Lake Trout and Lake Whitefish Populations in the 1836 Treaty-Ceded Waters of Lake Superior, Huron and Michigan, with Recommended Yield and Effort Levels for 2014. Available from https://www.michigan.gov/documents/dnr/2014StatusStocksReport 465244 7.pdf [accessed 9 December 2016].

Myers, R., Mertz, A.G., and Bridson, J. 1997. Spatial scales of interannual recruitment variations of marine, anadromous, and freshwater fish. Can. J. Fish. Aquat. Sci. 54(6):1400-1407. doi:10.1139/f97-045.

Myers, R.A., Rosenberg, A.A., Mace, P.M., Barrowman, N., and Restrep, V.R. 1994. In search of thresholds for recruitment overfishing. ICES J. Mar. Sci. 51(2):191-205. doi:10.1006/jmsc.1994.1020.

Olsen, J.B., Bentzen, P., and Seeb, J.E. 1998. Characterization of seven microsatellite loci derived from pink salmon. Mol. Ecol. 7(8):1087-1089. doi:10.1046/j.1365294X.1998.00401.x.

O’Reilly, P.T., Hamilton, L.C., McConnell, S.K., and Wright, J.W. 1996. Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can. J. Fish. Aquat. Sci. 53(10):2292-2298. doi:10.1139/f96-192.

Pella, J.J., and Milner, G.B. 1987. Use of genetic marks in stock composition analysis. Edited by N. Ryman and F. Utter, editors. Population genetics and fisheries management. University of Washington Press, Seattle, Washington. pp. 247-276.

Pella, J., and Masuda, M. 2001. Bayesian methods for analysis of stock mixtures from genetic characters. Fish. Bull. 99(1):151-167. Available from http://fishbull.noaa.gov/991/13.pdf [accessed 9 December 2016].

Pella, J., and Masuda, M. 2006. The Gibbs and splitmerge sampler for population mixture analysis from genetic data with incomplete baselines. Can. J. Fish. Aquat. Sci. 63(3):576596. doi:10.1139/f05-224.

Plummer, M., Best, N., Cowles, K., and Vines, K. 2006. CODA: convergence diagnosis and output analysis for MCMC. R News 6(1):7-11. Available from https://cran.r-project.org/doc/Rnews/Rnews_2006-1.pdf [accessed 9 December 2016].

Policansky, D., and Magnuson, J.J. 1998. Genetics, metapopulations, and ecosystem management of fisheries. Ecol. Appl. 8(Supplement 1):119-123. doi:10.1890/10510761(1998)8[S119:GMAEMO]2.0.CO;2.

Pritchard, J.K., Stephens, M., and Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics 155(2):945-959.

Quinn, T.J., II, and Deriso, R.B. 1999. Quantitative fish dynamics. Oxford University Press, New York. 542 pp .

R Core Team 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Reiss, H., Hoarau, G., Dickey-Collas, M., and Wolff, W.J. 2009. Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish Fish. 10(4):361-395. doi:10.1111/j.1467-2979.2008.00324.x.

Richards, L.J., Schnute, J.T., Kronlund, A.R., and Beamish, R.J. 1992. Statistical models for the analysis of ageing error. Can. J. Fish. Aquat. Sci. 49(9):1801-1815. doi:10.1139/f92-200.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. No. 191382 pp.

Riley, S.C., Roseman, E.F., Nichols, S.J., O’Brien, T.P., Kiley, C.S., and Schaeffer, J.S. 2008. Deepwater demersal fish community collapse in Lake Huron. Trans. Am. Fish. Soc. 137(6):1879-1890. doi:10.1577/T07-141.1

Schneider, C.P., Owens, R.W., Bergstedt, R.A., and O'Gorman, R. 1996. Predation by sea lamprey (Petromyzon marinus) on lake trout (Salvelinus namaycush) in southern Lake Ontario, 1982-1992. Can. J. Fish. Aquat. Sci. 53(9):1921-1932. doi:10.1139/f96-129.

Scribner, K.T., Gust, J.R., and Fields, R.L. 1996. Isolation and characterization of novel microsatellite loci: cross-species amplification and population genetic applications. Can. J. Fish. Aquat. Sci. 53(4):833-841. doi:10.1139/f95-254.

Sissenwine, M.P. 1984. Why do fish populations vary? Pages 59-64 in R. M. May, editor. Exploitation of marine communities. Springer-Verlag, Berlin. doi:10.1007/978-3-642-70157-3_3.

Smouse, P.E., Waples, R.S., and Tworek, J.A. 1990. A genetic mixture analysis for use with incomplete source population data. Can. J. Fish. Aquat. Sci. 47(3):620-634. doi: doi.org/10.1139/f90-070.

Stephenson, R.L. 1999. Stock complexity in fisheries management: a perspective of emerging issue related to population sub-units. Fish. Res. 43(1-3):247-249. doi:10.1016/S0165-7836(99)00076-4.

Taylor, E.B., Redenbach, Z., Costello, A.B., Pollard, S.J., and Pacas, C.J. 2001. Nested analysis of genetic diversity in northwestern North American char, Dolly Varden (Salvelinus malma) and bull trout (Salvelinus confluentus). Can. J. Fish. Aquat. Sci. 58(2):406-420. doi:10.1139/f00-262.

Then, A.Y., Hoenig, J.M., Hall, N.G. and Hewitt, D.A. 2015. Evaluating the predictive performance of empirical estimators of natural mortality using information on over 200 fish species. ICES J. Mar. Sci. 72(1)82-92. doi: 10.1093/icesjms/fsu136.

Thorson, J.T., Jensen, O.P., and Zipkin, E.F. 2014. How variable is recruitment for exploited marine fisheries? A hierarchical model for testing life history theory. Can. J. Fish. Aquat. Sci. 71(7):973-983. doi:10.1139/cjfas-2013-0645.

Tsehaye, I., Jones, M.L., Brenden, T.O., Bence, J.R., and Claramunt, R.M. 2014. Changes in the salmonine community of Lake Michigan and their implications for predator-prey balance. Trans. Am. Fish. Soc. 143(2):420-437. doi:10.1080/00028487.2013.862176.

Tsehaye, I., Brenden, T.O., Bence, J.R., Liu, W., Scribner, K.T., Kanefsky, J., Bott, K., and Elliott, R.F. 2016. Combining genetics with age/length data to estimate temporal changes in year-class strength of sources contributing to mixtures. Fish. Res. 173(3):236-249. doi:10.1016/j.fishres.2015.09.004.

Van der Elst, W., Meyvisch, P., Alonso, A., Ensor, H.M., Weir, C.J., Molenberghs, G. 2017. Surrogate: evaluation of surrogate endpoints in clinical trials. R package version 0.2. Available from https://cran.r-project.org/package=Surrogate [accessed 7 August 201y].

Walleye Task Group (WTG). 2014. Report for 2013 by the Lake Erie Walleye task group. Great Lakes Fishery Commission, Ann Arbor, Michigan. Available from http://www.glfc.org/lakecom/lec/WTG_docs/annual_reports/WTG_report_2014.pdf [accessed 9 December 2016].

Wirth, T., Saint-Laurent, R., and Bernatchez, L. 1999. Isolation and characterization of microsatellite loci in the walleye (Stizostedion vitreum), and cross-species amplification within the family Percidae. Mol. Ecol. 8(11):1960-1962. doi:10.1046/j.1365-294x.1999.00778-3.x.

6 Source Populations		12 Populations	
Low difference	High difference	Low difference	High difference
1) 0.833	1) 1.132	1) 0.783	1) 1.004
2) 0.634	2) 0.915	2) 0.698	2) 0.911
3) 0.387	3) 0.638	3) 0.604	3) 0.809
4) 0.056	4) 0.253	4) 0.501	4) 0.695
5) -0.440	5) -0.382	5) 0.387	5) 0.566
6) -1.470	6) -2.557	6) 0.257	6) 0.418
		7) 0.108	7) 0.245
	8) -0.067	8) 0.035	
	9) -0.280	9) -0.231	
	10) -0.550	10) -0.594	
	11) -0.900	11) -1.171	

Table 1. Assumed recruitment deviations (τ_{i}) values for sources for the simulations evaluating the accuracy of our proposed estimation approach for indexing recruitment fluctuations in populations contributing to mixtures. The τ_{i} values were constant across all simulations, whereas the year-class (γ) and source \times year-class deviations (\boldsymbol{v}) were randomly generated for each iteration.

Fig. captions

Fig. 1. Map of Lakes Michigan, Huron, St. Clair, and Erie. The hashed area in Lake Michigan is the MM3 statistical district from which lake trout were collected for the empirical application of the proposed estimation approach for indexing recruitment fluctuations in populations contributing to mixtures. The hashed area in Lake Huron is Saginaw Bay from which walleye were collected. Arrows depict the contributions from source hatchery strains (lake trout) or spawning populations (walleye) to the mixtures. The placement of the lake trout strains on the map is not intended to convey locational information as to where strains originated from or where they were stocked.

Fig. 2. Flowchart of the framework used to simulate source genetic data, source relative recruitments and abundances, and observations from the source and mixtures for testing the proposed approach for estimating relative recruitments for source populations contributing to mixed fisheries. The dashed boxes and numbers correspond to steps in the simulation process described in the Simulation factor levels section.

Fig. 3. Boxplots of Pearson correlations between estimated and true $\log _{e}$ recruitment levels across the main-effect factor levels from the simulations conducted evaluating the performance of the proposed estimation approach. Boxplot whiskers extend to the most extreme correlation that is no more than 1.5 times the interquartile range of the correlations.

Fig. 4. Median and interquartile (IQR) range of correlations between estimated and true $\log _{e}$ recruitment levels from sensitivity analyses evaluating the robustness of the proposed estimation approach (Sensitivity scenarios: no aging uncertainty or total mortality variability $=$ Base; random total mortality $=$ Rand; autocorrelated total mortality $=$ Auto;
population-specific total mortality $=$ Pop; low aging error with accurate aging assumed $=$ AE06I, high aging error with accurate aging assumed $=$ AE10I; low aging error incorporating aging error matrix $=\mathrm{AE} 06 \mathrm{C}$; high aging error incorporating aging error matrix $=\mathrm{AE} 10 \mathrm{C})$. The x -axis indicates the number of source populations, genetic divergence among the sources, and mixture fishery sample size.

Fig. 5. Recruitment estimates and 95\% highest posterior density intervals by year class for Lakes Huron and Lakes Erie/St. Clair walleye populations from the estimation approach proposed in this study based on collection of individuals from the Saginaw Bay recreational fishery (Fig. 1). Also plotted are the recruitment estimates for the same year classes from SCAA models constructed for the lakes (Fielder and Bence 2014; WTG 2014).

Fig. 6. Recruitment estimates 95% and highest posterior density intervals by year class for four hatchery strains of lake trout stocked into Lake Michigan from the estimation approach proposed in this study based on collection of individuals from the MM3 statistical district (Fig. 1). Also plotted are the numbers of lake trout stocked in northern Lake Michigan by hatchery strain for the same year classes.

- Base. ORand. OAuto. ○Pop. OAE06I AE10I $\triangle A E 06 C \circ$ AE10C

- GSI Recruitment \bigcirc Stocking

Appendix A - Description of Source and Mixture Data Simulator

Source and mixture data were simulated following the hierarchical population structure and process of Guo et al. (2008). Allele frequencies for each source and locus were simulated from Dirichlet distributions using a two-stage approach (see Fig. A1 for an illustration of this approach). In the first stage, hyperpopulations of fixed allele frequencies for the h-th locus (ψ_{h}) were generated by a random draw from a Dirichlet distribution with concentration parameters set equal to 1 [i.e., $\psi_{h} \sim \mathrm{D}(\mathbf{1})$ (total number of concentration parameters equal the total number of alleles for the h-th locus)]. The simulated allele frequencies at the h-th locus for the i-th source were then generated by a random draw from a Dirichlet distribution with concentration parameters equal to $((1-\theta) / \theta) \psi_{h}$. As noted by Guo et al. (2008), θ serves as a user-specified population divergence measure similar to Wright's F_{ST} (Wright 1965). When θ is small, the concentration parameters are large, which results in allele frequencies for the h-th locus that are very similar to the hyperpopulation of allele frequencies across all sources. Conversely when θ is large, the concentration parameters are small, which results in allele frequencies that can vary widely among the sources and from the hyperpopulation of allele frequencies.

For simulations where populations had varying divergence levels (see Simulation factor levels), actual allele frequencies were generated using a three-stage approach. In the first stage, we generated the ψ_{h} using the same method described above [i.e., $\psi_{h} \sim \mathrm{D}(\mathbf{1})$]. In the second stage, we generated two sub-hyperpopulations of allele frequencies based on random draws from Dirichlet distributions with concentration parameters equal to $\left(\left(1-\theta_{\text {High }}\right) / \theta_{\text {High }}\right) \psi_{h}$ (i.e., $\left.\phi_{g, h} \sim D\left(\left(\left(1-\theta_{\text {High }}\right) / \theta_{\text {High }}\right) \psi_{h}\right)\right)$ where $\phi_{g, h}$ denotes the allele frequencies for the h-th locus for the g-th sub-hyperpopulation and $\theta_{\text {High }}$ simply denotes a "high" genetic divergence factor so that
expected genetic differences between the two sub-hyperpopulations would be high. We then generated the actual frequencies for the h-th locus for each source from random draws from Dirichlet distributions with concentration parameters equal to $\left(\left(1-\theta_{\text {Low }}\right) / \theta_{\text {Low }}\right) \phi_{g, h}$ where $\phi_{1, h}$ was used for one-half of the sources and $\phi_{2, h}$ was used for the other half (Tsehaye et al. 2016). Here, $\theta_{\text {Low }}$ simply denotes a "low" genetic divergence factor so that expected genetic differences of the source populations within a particular sub-hyperpopulations would be expected to be small. With this three-stage approach, each source would be expected to have relatively low levels of genetic divergence with half of the sources, and relatively high levels of genetic divergence with the other half of the sources.

Observation error was incorporated in the generation of both allele relative frequencies from the sources as well the collection of individuals from the mixture. Genotypes of individuals collected from each of the sources were drawn randomly from multinomial distributions with probabilities equal to the expected genotype frequencies under Hardy-Weinberg equilibrium and the number of trials equal to the source sample size under evaluation (Fig. A1). These "observed" genotypes were then used to calculate allele relative frequencies for the sources. Data from the mixture were generated by two-stage multinomial random sampling. In the first stage, the number of sampled individuals from the mixture that came from each of the sources by age in each sampling year was determined by random draw from multinomial distribution with probabilities calculated based on the true relative abundances of each source and age for that examined scenario, and an assumed total mixture sample size. In the second stage, the genotypes of individuals from the mixture that came from each of the sources were generated by random draws from multinomial distributions with probabilities equal to the expected genotype
frequencies for the sources and the number of trials equal to the number of individuals in the mixture that came from the sources.

The true relative abundances at age by source for each simulation were obtained from equation 5 , based on assumed $\boldsymbol{\tau}, \boldsymbol{\gamma}, \boldsymbol{v}$, and $Z_{i, a}$. In all base simulations $Z_{i, a}$ was fixed at 0.30 , but in some sensitivity simulations stochasticity in $Z_{i, a}$ was incorporated in the operating model.

Relative abundance at age for each source also depended on recruitment, through $\boldsymbol{\tau}, \gamma$, and \boldsymbol{v}, based on equation 4. The source-specific deviations from grand mean recruitment (τ_{i}) were set at 6 or 12 fixed levels that depended on the number of sources and the levels of difference in the source effects (see Simulation factor levels). Source-specific temporal variation in recruitment, as for the estimation model, consisted of the sum of year-class (i.e., coherent temporal) deviations $\left(\gamma_{y}\right)$ and source \times year-class (i.e., ephemeral temporal) deviations $\left(v_{i, y}\right)$. The year-class deviations $\left(\gamma_{y}\right)$ were simulated using a first-order autoregressive (AR1) process

$$
\gamma_{y}=\rho \gamma_{y-1}+\varepsilon_{y}
$$

$$
\begin{equation*}
\varepsilon_{y} \sim N\left(0, \sigma_{\varepsilon}^{2}\right) \tag{A1}
\end{equation*}
$$

where ρ is the auto-regressive coefficient. The source \times year-class deviations $\left(v_{i, y}\right)$ were simulated as a white-noise process:
$v_{i, y} \sim N\left(0, \sigma_{v}^{2}\right)$.
The amount of total temporal recruitment variation $\left(\sigma_{y}^{2}\right)$ and the ratio of how total temporal recruitment variation was allocated between year-class variation $\left(\sigma_{\varepsilon}^{2}\right)$ and source \times year-class variation (σ_{v}^{2}) were two of the factors that were explored during simulations to see how they affected accuracy and precision of the proposed estimation approach. Under an AR1 process, the stationary variance for the year-class deviations is

1087

$$
\begin{equation*}
\sigma_{\gamma}^{2}=\frac{\sigma_{\varepsilon}^{2}}{1-\rho^{2}} . \tag{A3}
\end{equation*}
$$

The overall temporal variation $\left(\sigma_{y}^{2}\right)$ in simulated $\log _{e}$ recruitments was the sum of stationary variance for the year-class deviations and the source \times year-class variation $\left(\sigma_{v}^{2}\right)$
$\sigma_{y}^{2}=\sigma_{\gamma}^{2}+\sigma_{v}^{2}$.
For all simulations, we assumed ρ was equal to 0.5 . By assuming ρ and specifying the amount of total temporal recruitment variation and the ratio of how total temporal recruitment variation was allocated between year-class variation and source \times year-class variation, we could use equations A 3 and A 4 to solve for σ_{ε}^{2}. This allowed us to simulate the time series of γ_{y} and $v_{i, y}$ according to equations A1 and A2 for a particular simulation scenario.

References

Guo, F., Dey, D.K., and Holsinger, K.E. 2008. A hierarchical Bayesian approach for estimating the origin of a mixed population. Edited by B. Clarke and J. K. Ghosal. Pushing the limits of contemporary statistics: contributions in honor of Jayanta K. Ghosh. Institute of Mathematical Statistics, Beachwood, Ohio. pp. 237-250 doi:10.1214/074921708000000174.

Tsehaye, I., Brenden, T.O., Bence, J.R., Liu, W., Scribner, K.T., Kanefsky, J., Bott, K., and Elliott, R.F. 2016. Combining genetics with age/length data to estimate temporal changes in year-class strength of sources contributing to mixtures. Fish. Res. 173(3):236-249. doi:10.1016/j.fishres.2015.09.004.

Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19(3):395-420. doi:10.2307/2406450.

Fig. A1. Example illustration for how genetics data were generated for source populations. Illustration is for a single locus, assuming 4 alleles per locus, 3 source populations, a population divergence factor $(\mathrm{j})=0.06$, and a source sample size of 200 fish. The depicted hyperpopulation allele proportions, the source-specific allele proportions, the expected genotype proportions for source 3, and the observed genotype counts for source 3 reflect just realizable random draws from the assumed distributions and are provided only for illustrative purposes.

Appendix B- Description of Lake Trout Hatchery Source Data and Genotyping

According to Page et al. (2003), lake trout stocking efforts in the Great Lakes have primarily been based on eight hatchery strains. For this research, we had tissue samples from six of these primary strains, as well as one additional hatchery strain. Hatchery strains from which we had tissue samples included four Lake Superior strains (Isle Royale, Apostle Island, Marquette, and Traverse Island), two Lake Michigan strains (Green Lake and Lewis Lake), and one Seneca Lake strain. Page et al. (2003) provides a discussion of the origin of these strains. These seven strains have comprised approximately 96% of the lake trout stocked in the northern Lake Michigan region from which mixture fishery tissue samples were obtained (USFWS and GLFC 2010). Fin tissue samples from these seven strains were collected by personnel affiliated with the hatcheries where broodstock were maintained. A total of 669 individuals from the seven hatchery strains were genotyped for the determination of allele frequencies.

Mixture and hatchery strain tissue samples were genotyped at 10 microsatellite loci: Sfo1, Sfo12, and Sfo 18 (Angers et al. 1995); Scou19 (Taylor et al. 2001); One 99 and One 10 (Scribner et al. 1996); Ogo1a (Olsen et al. 1998); Ssa85 (O’Reilly et al. 1996); and Sfo-C24 and Sfo-D75 (King et al. 2012). PCR reactions were conducted in either $25 \mu \mathrm{l}$ volumes using 100 ng of DNA (Sfo1, Sfo12, Sfo18, Scou19, One 9 , One $\mu 10$, Ogo1a, and Ssa85) or $10 \mu \mathrm{l}$ volumes using 40 ng of DNA (Sfo-C24 and Sfo-D75). PCR buffer consisted of 10 mM Tris-HCl at $\mathrm{pH} 8.3,50 \mathrm{mM}$ $\mathrm{KCl}, 0.01 \%$ gelatin, $0.01 \% \mathrm{NP}-40$, and 0.01% Triton-X 100), and locus-specific volumes of dNTPs and MgCl_{2} (Table B1). PCR cycling conditions also were locus-specific (Table B1). Fluorescently labeled forward primers and unlabeled reverse primers were used for $S f o 1, S f o 12$, Sfo18, Scou19, Oneн9, One 10, Ogo1a, and Ssa85, whereas infrared fluorescently labeled
forward primers and unlabeled reverse primers were used for $S f o-\mathrm{C} 24$ and $S f o-D 75$. For $S f o 1$, Sfo12, Sfo 18, Scou19, One 19 , One 10 , Ogo1a, and Ssa85, PCR products were separated by size on a denaturing 6.0% polyacrylamide gel and visualized using a Hitachi FMBIO II Multi-Vew scanner (Hitachi Solutions America, San Bruna, CA). For Sfo-C24 and Sfo-D75, PCR products were separated by size on a denaturing 6.5% polyacrylamide gel and visualized using a LI-COR 4300 DNA Analyzer (LI-COR Biosciences, Lincoln, NE).

Number of alleles, allelic richness, observed heterozygosity $\left(H_{o}\right)$, and expected heterozygosity $\left(H_{e}\right)$ for each locus and hatchery strain are shown in Table B2. Each hatchery strain at each locus was found to be in HW equilibrium at an error rate of 0.000714 after Bonferroni correction (Table B2). Of the 315 possible pairwise combinations between loci for the hatchery strains, of hatchery strains and loci, only two pairings were found to be in linkage disequilibrium (non-random association between alleles) at an error rate of 0.000159 after Bonferroni correction. These combinations were the following: Isle Royale strain: Ssa85 and Sfo-D75; Green Lake strain: Sfo18 and Sfo-C24. Because linkage disequilibriums for particular locus combinations were only found in a single hatchery strain, we did not feel it was necessary to exclude any of the loci for which linkage disequilibrium was detected.

Pairwise $F_{S T}$ values between hatchery strains ranged from 0.001 for the Marquette and Apostle Island hatchery strains to 0.090 for the Seneca Lake and Lewis Lake strains (Table B3). The 4 hatchery strains from Lake Superior had the lowest pairwise $F_{S T}$ values among all the assessed combinations. $F_{S T}$ values did not exceed 0.0180 for any of the Lake Superior hatchery strain pairs (Table B3). Each of the pairwise $F_{S T}$ values was significantly different from 0 at $P<0.0001$; however, conducting 100% mixture simulations in ONCOR (Kalinowski et al. 2007), which implements the simulation approach of Anderson et al. (2008) and involves repeated
(number of iterations $=1,000$) generation of mixtures comprised solely of fish from just one of the hatchery strains, indicated there was some difficulty in differentiating between the Lake Superior strains based on the data available. Accuracies from the 100% mixture simulations for the Lake Superior strains ranged from around 72 to 85%. In other applications, 90% accuracy thresholds from 100% mixture simulations have been the target for sources prior to genetic stock identification analyses to reduce the possibility of biases in contribution estimates (Seeb and Crane 1999; Beacham et al. 2012; Brenden et al 2015). Because misallocation between Lake Superior hatchery strains could affect the accuracy of the recruitment estimates from our estimation approach, we chose to combine all Lake Superior hatchery strains together for the purpose of estimating recruitment levels. Thus, our analyses involved a total of four hatchery strains: Lake Superior, Green Lake, Lewis Lake, and Seneca Lake. Accuracy from 100\% mixture simulations for these four strains ranged from approximately 95 to 100%.

LITERATURE CITED

Anderson, E.C., Waples, R.S., and Kalinowski, S.T. 2008. An improved method for predicting the accuracy of genetic stock identification. Can. J. Fish. Aquat. Sci. 65(7):1475-1486. doi:10.1139/F08-049.

Angers, B., L. Bernatchez, A. Angers, and L. Desgroseillers. 1995. Specific microsatellite loci for brook charr reveal strong population subdivision on a microgeographic scale. J. Fish Biol. 47(Supplement A):177-185. doi:10.1111/j.1095-8649.1995.tb06054.x.

Beacham, T.D., Wallace, C.G., Le, K.D., and Beere, M. 2012. Population structure and run timing of steelhead in the Skeena River, British Columbia. N. Am. J. Fish. Manage. 32(2):262-275. doi:10.1080/02755947.2012.675953.

Brenden, T.O., Scribner, K.T., Bence, J.R., Tsehaye, I., Kanefsky, J., Vandergoot, C.S., and Fielder, D.G. 2015. Contributions of Lake Erie and Lake St. Clair walleye populations to the Saginaw Bay, Lake Huron recreational fishery: evidence from genetic stock identification. N. Am. J. Fish. Manage. 35(3):567-577. doi:/10.1080/02755947.2015.1020079.

Kalinowski, S.T., Manlove, K.R., and Taper, M.L. 2007. ONCOR: a computer program for genetic stock identification. Montana State University, Bozeman. Available at http://www.montana.edu/kalinowski/Software/ONCOR.htm [accessed 9 December 2016].

King, T.L., Lubinski, B.A., Burnham-Curtis, M.K., Stott, W., and Morgan, R.P. 2012. Tools for the management and conservation of genetic diversity in brook trout (Salvelinus fontinalis): tri- and tetranucleotide microsatellite markers for the assessment of genetic diversity, phylogeography, and historical demographics. Conserv. Genet. Resour. 4(3):539-543. doi:10.1007/s12686-012-9603-z.

Olsen, J.B., Bentzen, P., and Seeb, J.E. 1998. Characterization of seven microsatellite loci derived from pink salmon. Mol. Ecol. 7(8):1087-1089. doi:10.1046/j.1365294X.1998.00401.x.

O’Reilly, P.T., Hamilton, L.C., McConnell, S.K., and Wright, J.W. 1996. Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can. J. Fish. Aquat. Sci. 53(10):2292-2298. doi:10.1139/f96-192.

Page, K.S., Scribner, K.T., Bennett, K.R., Garzel, L.M., and Burnham-Curtis, M.K. 2003. Genetic assessment of strain-specific sources of lake trout recruitment in the Great Lakes. Trans. Am. Fish. Soc. 132(5):877-894. doi: 10.1577/T02-092.

Scribner, K.T., Gust, J.R., and Fields, R.L. 1996. Isolation and characterization of novel microsatellite loci: cross-species amplification and population genetic applications. Can. J. Fish. Aquat. Sci. 53(4):833-841. doi:10.1139/f95-254.

Seeb, L. W., and Crane, P.A. 1999. Allozymes and mitochondrial DNA discriminate Asian and North American populations of chum salmon in mixed stock fisheries along the south coast of the Alaska peninsula. Trans. Am. Fish. Soc. 128(1):88-103. doi:10.1577/15488659(1999) $128<0088:$ AAMDDA $>2.0 . C O ; 2$.

Taylor, E.B., Redenbach, Z., Costello, A.B., Pollard, S.J., and Pacas, C.J. 2001. Nested analysis of genetic diversity in northwestern North American char, Dolly Varden (Salvelinus malma) and bull trout (Salvelinus confluentus). Can. J. Fish. Aquat. Sci. 58(2):406-420. doi:10.1139/f00-262.

Weir, B.S., and Cockerham, C.C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358-1370. doi:10.2307/2408641.

Table B1. Amplification conditions for the 10 microsatellites used to genotype lake trout hatchery strains and individuals collected from the northern Lake Michigan mixture fishery. The volumes of dNTP and MgCl 2 represent amounts added to PCR buffer.

| Locus | dNTP volume
 (mM) | MgCl 2 volume
 (mM) |
| :---: | :---: | :---: | | Cycling Condition |
| :---: |
| Sfo1 |
| 0.08 |
| 2.5 |
| Sfo12 |

$\begin{array}{lll}\text { Sfo-D75 } & 0.2 & 4.00\end{array}$
$94^{\circ} \mathrm{C}$ for 2 m (1 cycle) - denaturing $94^{\circ} \mathrm{C}$ for 1 m (32 cycles) - denaturing $54^{\circ} \mathrm{C}$ for $1 \mathrm{~m}-$ annealing $72^{\circ} \mathrm{C}$ for 1 m and 15 s - extension
$72^{\circ} \mathrm{C}$ for 5 m (1 cycle) - extension

Table B2. Genetic variation in lake trout hatchery strains at 10 microsatellite loci screened for this study. Total number of alleles, allelic richness, expected $\left(H_{e}\right)$ and observed $\left(H_{o}\right)$ heterozygosities, and P-values for Hardy-Weinberg equilibrium tests at individual loci for each hatchery strains and combined across hatchery strains (total number of alleles and allelic richness only) are listed. Also shown are the results when all Lake Superior hatchery strains are combined. Three genetic fixation indices (Weir and Cockerham 1984) for each loci and for all loci are also displayed ($F_{\mathrm{ST}}=$ mean genetic divergence between pairs of spawning populations, $F_{\text {IS }}=$ mean genetic differentiation within spawning populations; $F_{\text {IT }}=$ deviation in the total sample). For the genetic fixation indices calculated for all loci, 95% confidence limits for the indices were derived by bootstrapping. $\mathrm{NC}=$ Not calculated

Locus	Hatchery Strain	Alleles	Allelic Richness	H_{e}	H_{o}	$\begin{gathered} \hline \text { HWE } \\ P \text {-value } \end{gathered}$	$F_{\text {ST }}$	$F_{\text {IS }}$	$F_{\text {IT }}$
Sfol	All strains	3	2.9	NC	NC	NC	0.080	0.010	0.089
	Isle Royale	3	3.0	0.16	0.17	1.000			
	Apostle Island	3	3.0	0.20	0.21	1.000			
	Marquette	3	3.0	0.15	0.16	1.000			
	Traverse Island	3	3.0	0.31	0.28	0.028			
	Green Lake	3	2.7	0.09	0.09	1.000			

	Lewis Lake	2	2.0	0.05	0.03	0.053			
	Seneca Lake	3	2.7	0.42	0.41	0.430			
	All Lake Superior strains	3	3.0	0.20	0.20	0.312			
Sfo12	All strains	5	4.1	NC	NC	NC	0.025	-0.003	0.023
	Isle Royale	4	3.7	0.31	0.28	0.449			
	Apostle Island	4	4.0	0.26	0.29	0.912			
	Marquette	5	4.9	0.24	0.24	0.575			
	Traverse Island	4	4.0	0.39	0.35	0.113			
	Green Lake	3	3.0	0.27	0.31	0.702			
	Lewis Lake	4	3.9	0.15	0.15	1.000			
	Seneca Lake	3	3.0	0.38	0.37	0.330			
	All Lake Superior strains	5	4.4	0.30	0.29	0.285			
Sfol8	All strains	11	7.6	NC	NC	NC	0.068	-0.089	-0.016
	Isle Royale	9	8.3	0.63	0.66	0.074			

	Apostle Island	7	6.3	0.61	0.66	0.612			
	Marquette	7	6.2	0.57	0.61	0.749			
	Traverse Island	6	6.0	0.56	0.58	0.850			
	Green Lake	6	5.6	0.58	0.70	0.013			
	Lewis Lake	7	6.3	0.63	0.70	0.953			
	Seneca Lake	4	4.0	0.41	0.45	0.754			
	All Lake Superior strains	10	7.7	0.60	0.63	0.405			
Scou19	All strains	12	8.3	NC	NC	NC	0.023	-0.001	0.023
	Isle Royale	9	8.4	0.65	0.64	0.544			
	Apostle Island	7	6.9	0.69	0.62	0.555			
	Marquette	10	8.8	0.71	0.73	0.005			
	Traverse Island	7	7.0	0.73	0.71	0.520			
	Green Lake	8	7.3	0.76	0.81	0.445			
	Lewis Lake	7	7.0	0.69	0.70	0.465			
	Seneca Lake	7	6.3	0.72	0.74	0.760			

	Traverse Island	3	3.0	0.29	0.23	0.228			
	Green Lake	2	2.0	0.30	0.31	1.000			
	Lewis Lake	3	2.7	0.48	0.53	0.181			
	Seneca Lake	2	2.0	0.38	0.41	0.417			
	All Lake Superior strains	3	2.2	0.27	0.27	0.867			
Ogola	All strains	8	4.3	NC	NC	NC	0.098	-0.002	0.096
	Isle Royale	3	3.0	0.33	0.36	0.545			
	Apostle Island	4	3.7	0.48	0.41	0.166			
	Marquette	3	3.0	0.44	0.44	0.212			
	Traverse Island	4	4.0	0.38	0.35	0.024			
	Green Lake	4	3.7	0.53	0.60	0.437			
	Lewis Lake	6	5.7	0.65	0.63	0.188			
	Seneca Lake	4	3.7	0.60	0.62	0.678			
	All Lake Superior strains	4	3.5	0.42	0.39	0.073			

Ssa85	All strains	7	4.3	NC	NC	NC	0.057	-0.068

Table B3. Pairwise mean genetic differentiation indices $\left(F_{\mathrm{ST}}\right)$ calculated from 10 microsatellite loci for the seven lake trout hatchery strains for which tissue samples were available.

Hatchery Strain	Isle Royale	Apostle Island	Marquette Traverse Island Green Lake Lewis Lake				
Apostle Island	0.0127^{*}						
Marquette	0.0144^{*}	0.0095^{*}					
Traverse Island	0.0142^{*}	0.0124^{*}	0.0180^{*}				
Green Lake	0.0329^{*}	0.0389^{*}	0.0201^{*}	0.0546^{*}			
Lewis Lake	0.0468^{*}	0.0451^{*}	0.0590^{*}	0.0668^{*}	0.0379^{*}		
Seneca Lake	0.0859^{*}	0.0619^{*}	0.0822^{*}	0.0794^{*}	0.0879^{*}	0.0901^{*}	

*significantly different from 0 at alpha $=0.05 / 21=0.002381$

Appendix C - MCMC Traceplots from Saginaw Bay Walleye and northern Lake Michigan Lake
Trout Applications

Fig. C1. Overlain traceplots for relative recruitments from Lake Huron and Lakes Erie/St. Clair for the 2002 to 2006 year classes for the five MCMC chains that were simulated for the Saginaw Bay, Lake Huron walleye application of the proposed estimation approach for indexing recruitment fluctuations in populations contributing to mixtures.

Fig. C2. Overlain traceplots for relative recruitments for Lewis Lake, Seneca Lake, Green Lake, and Lake Superior hatchery strains for the 2003 to 2008 year classes for the five MCMC chains that were simulated for the northern Lake Michigan lake trout application of the proposed estimation approach for indexing recruitment fluctuations in populations contributing to mixtures.

