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Abstract: We describe a methodology for estimating relative recruitments for source 16 

populations (sources) contributing to mixed fisheries by incorporating age into genetic stock 17 

identification models. The approach produced recruitment estimates that were strongly correlated 18 

(median correlation = 0.849; 2.5 and 97.5 percentile in correlations = 0.613 and 0.951) with 19 

simulated recruitments across various design factors, including number of sources, genetic 20 

divergence among sources, and temporal variation in source recruitments. Sensitivity analyses 21 

indicated that the approach was robust to aging inaccuracies and assumed source mortalities. 22 

Application to walleye Sander vitreus sources contributing to the Saginaw Bay, Lake Huron 23 

fishery produced similar recruitment estimates to assessment models. There was greater 24 

discrepancy between recruitment estimates for lake trout Salvelinus namaycush hatchery strains 25 

in northern Lake Michigan when compared to strain stocking levels, although this mismatch may 26 

stem from stocking levels being a poor recruitment measure. The estimation approach should 27 

prove beneficial for indexing source recruitment based on fishery or assessment collections from 28 

mixtures, even when long-term time-series of harvest and survey data required for integrated 29 

assessments are not available. 30 

  31 



Introduction 32 

 Recruitment (number of hatched individuals surviving early-life mortality) is one of the 33 

fundamental rate functions governing the dynamics of populations, along with growth and 34 

mortality of older individuals. Often in marine and freshwater fish populations, recruitment is 35 

characterized by considerable spatial and temporal variation (Sissenwine 1984; Fogarty 1993; 36 

Myers et al. 1997; Thorson et al. 2014; Hansen et al. 2015). Recruitment levels can vary in 37 

response to spawning stock size due to associated changes in the number and quality of progeny 38 

produced, and density-dependent early life survival, and the influence of these factors are 39 

reflected in stock-recruitment models. Although there are cases where average recruitment stays 40 

nearly constant over a range of stock sizes (e.g., when the stock-recruitment relationship is steep 41 

and approaches an asymptote), recruitment levels still typically vary substantially due to 42 

biological, physical, and environmental factors that influence early-life survival, spawning stock 43 

fecundity, or other aspects of the regeneration cycle of populations (Hilborn and Walters 1992; 44 

Quinn and Deriso 1999). 45 

 From a fisheries management perspective, knowledge of recruitment patterns, underlying 46 

relationships with spawning stock biomass, and the extent of variability within and among 47 

populations is considered critical (Miller 2007; Ludsin et al. 2014). The relationship between 48 

spawning stock biomass and subsequent reproduction and recruitment to the fishable population 49 

largely dictate how much yield can be sustainably harvested from populations, which has 50 

resulted in the identification and wide use of harvest policies based on reference points derived 51 

from review of stock-recruitment relationships for fish stocks (Mace 1994; Myers et al. 1994). In 52 

cases of mixed fisheries [i.e., fisheries that exploit individuals from multiple source populations 53 

(hereafter mixtures)], an understanding of recruitment levels and variability in recruitment of 54 



individual source populations is also important as less productive populations can be 55 

overharvested if policies do not account for productivity differences among populations 56 

(Hutchings 1996, 2000; Stephenson 1999; Frank and Brickman 2000; Reiss et al. 2009). 57 

Unfortunately, accurate evaluation of recruitment levels of source populations (hereafter sources) 58 

that contribute to mixtures can be difficult if assessment sampling is not conducted when 59 

populations are separated (Guan et al. 2013; Li et al. 2015).  60 

 Herein, we propose a methodological approach for estimating annual relative recruitment 61 

levels for sources based on recreational, commercial, or assessment collections from mixtures, 62 

and use simulations to evaluate the estimation performance of the approach.  The proposed 63 

methodology incorporates age of fish collected from mixtures into widely used model-based 64 

genetic stock identification (GSI) analyses (e.g., Pella and Milner 1987; Pella and Masuda 2001). 65 

Bjorndal and Bolten (2008) previously noted that temporal variation in source contributions to 66 

mixtures can arise from variations in recruitment, mortality, and/or emigration. The methodology 67 

we propose is premised on using observed temporal variability in source contributions and 68 

available information on mortality and limiting assumptions on movement as a means to index 69 

annual changes in source-specific recruitment levels. Whereas similar approaches have assumed 70 

that annual changes in recruitment levels of sources are consistent across years (Tsehaye et al. 71 

2016), the approach we present here allows for annual fluctuations in source recruitment levels. 72 

The availability of genetic data is increasing, as is the awareness of how these data can be used 73 

in stock assessments (Spies and Punt 2015).  We emphasize that our proposed methodology has 74 

more limited objectives (estimation of relative recruitment from multiple sources to a mixture) 75 

and substantially lower data requirements than a spatially explicit integrated assessment would.   76 



We provide two empirical applications of the proposed methodology using mixture data 77 

for walleye Sander vitreus from Saginaw Bay, Lake Huron and lake trout Salvelinus namaycush 78 

from northern Lake Michigan. For the walleye example, the contributing sources were Lake 79 

Huron and Lakes Erie and St. Clair (hereafter Lake Erie/St. Clair) walleye populations (Fig. 1). 80 

For the lake trout example, the contributing source data consisted of different hatchery strains 81 

that have been stocked into Lake Michigan (i.e., until recently negligible wild reproduction of 82 

lake trout occurred in the lake) (Fig. 1). For both the walleye and lake trout examples, other 83 

estimates of recruitment levels for contributing sources were available to which recruitment 84 

estimates from our proposed methodology could be compared. The comparison of recruitment 85 

estimates from our proposed approach with those from these other data sources did not represent 86 

a true validation of the proposed methodology, as actual recruitment levels for both the walleye 87 

and lake trout case studies were unknown. However, the simulations that were conducted as part 88 

of this research did provide a means to validate performance accuracy, as in these cases 89 

recruitment levels of the sources were known.   90 

 91 

Methods 92 

Estimation approach 93 

For regular model-based GSI analysis, the probability (π) of observing genotype samples 94 

(X) in a mixture given estimates of the source proportional contributions (p) and allele relative 95 

frequencies at each locus and source (Q) is generally specified as 96 
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where M (m=1…M) is the number of fish sampled from the mixture, I (i=1…I) is the number of 98 

sources, pi is the proportional contribution for the i-th source (i.e., the i-th element of p) to the 99 

mixture, and ( )imf Q|X is the probability of an individual from the i-th source having the same 100 

genotype as the m-th individual from the mixture, which is determined from the allele relative 101 

frequencies for the i-th source under an assumed genetic model (e.g., Hardy-Weinberg 102 

equilibrium) (Pella and Milner 1987; Pella and Masuda 2001). As in Pella and Masuda (2001), if 103 

xm,h,j denotes the count of the j-th allele of the h-th locus for the m-th individual, then Xm 104 

constitutes the collective allele counts for all loci for the m-th individual. As noted by Tsehaye et 105 

al. (2016), to infer changes in recruitment levels within the context of GSI analyses, proportional 106 

contributions for sources must be expanded to include ages of individuals collected from the 107 

mixture and when the mixture was sampled (i.e., sampling year). Thus, Equation 1 gets 108 

expanded to  109 
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where Xm now also include the age (a) of the m-th individual along with the individual’s 111 

multilocus genotype, 
s

aiP,  is the proportional contribution of the i-th source population for the a-112 

th age class in the s-th sampling year, and Ps is the collection of proportional contributions for 113 

the sources and age classes for a particular sampling year. As with p, the elements of Ps for each 114 

sampling year are defined on the simplex (contributions must be greater than 0, less than 1, and 115 

must sum to 1 across all elements).  116 

For indexing recruitment, Tsehaye et al. (2016) proposed modeling the elements of Ps 117 

through mathematical representation of the underlying population-specific processes affecting 118 

abundance levels. The population-specific process assumed by Tsehaye et al. (2016) was 119 



intended for a long-lived species such as lake sturgeon Acipenser fulvescens with high pre-120 

recruitment mortality and low (and relatively constant) post-recruitment mortality rates, which 121 

results in a constant rate of change in recruitment levels (on a loge scale time) over time. We 122 

adopt a similar approach herein; however, we assume an underlying process that allows annual 123 

recruitment levels to fluctuate. Specifically, we propose that recruitment of the sources be 124 

modeled as multiplicative deviations from an overall grand mean recruitment level 125 
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where 
y

iN 0,  is the abundance at age 0 (or an alternative specified age of recruitment) for the i-th 127 

source and the y-th year class, µ is the grand mean abundance at age of recruitment, τi are source 128 

deviations from the grand mean, yγ are year-class deviations (i.e., coherent temporal deviations 129 

common to all sources) from the grand mean, and yi ,υ  are source × year-class interaction 130 

deviations (i.e., ephemeral-temporal deviations that are independent year-class deviations for 131 

each source). Estimation of the grand mean abundance is generally not possible from mixture 132 

compositions. Consequently, Equation 3 reduces to 133 
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where 
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Relative abundances at age for the sources associated with different year classes can be forward 136 

projected using a standard exponential mortality model 137 
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1, is the cumulative instantaneous total mortality experienced by the i-th source up 139 

to the a-th age and o is used to index age. With a mixture fishery operating in a specific location 140 



of a system, only certain fractions of the sources are likely to move to this region and be subject 141 

to exploitation. Thus, the expected relative abundances at age for the sources located within the 142 

boundaries where a mixed fishery operates is 143 
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where aid ,  is the fraction of fish from the i-th source and a-th age that move into the region of 145 

the mixture fishery.  146 

When collections are made from mixtures in a particular sampling year, collected 147 

individuals represent a range of year classes with the range depending on the sampling year and 148 

ages of collected individuals. Consequently, the expected proportional contributions to a mixture 149 

from the i-th source for the a-th age can be calculated as  150 
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where min(age) and max(age) indicate the minimum and maximum age, respectively, in the 152 

mixture and s-o and s-a indexes the correct year class for calculating the contributions. As 153 

previously indicated, temporal variations in source contributions to mixtures can arise from 154 

variations in recruitment, mortality, and/or emigration (Bjorndal and Bolten 2008), and this is 155 

evident from Equations 5-7. This means that relative recruitment levels, total mortalities, and 156 

movement rates are confounded, thus simplifications and/or assumptions must be made to assess 157 

recruitment based on mixture compositions. For our application, we assume that age-specific 158 

total mortality estimates for the sources will be available based on other types of analyses, such 159 

as catch curve assessments, tagging studies, or other types of direct or indirect methods (Ricker 160 

1975; Hewitt et al. 2007; Then et al. 2014). With respect to movement, it is not necessary for 161 

actual movement rates to be known for the sources and ages for recruitment to be indexed based 162 



on the above approach. Rather, it is only necessary for movement rates to be constant across ages 163 

within a source for using the approach to index inter-annual variation in relative recruitments. If 164 

estimates of source-specific movement rates to the mixture are available, then relative 165 

recruitment comparisons across sources can be made so long as source vulnerability to 166 

assessment or fishing gear in the mixture is the same.  167 

Under this formulation, the probability in equation 2 can be re-expressed as  168 
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where ( )υγτ ,,,

s

aiP  is used to denote that 
s

aiP, is a function of υγτ  and , , . We do not include total 170 

mortality and movement rates in the function for 
s

aiP,  as in our application we are treating these 171 

as fixed constants rather than parameters to be estimated.  Equation 8 assumes that ages of 172 

individuals from the mixture can be accurately assigned. When aging error occurs, however, the 173 

uncertainty in age estimates can be incorporated in the probability calculations as this uncertainty 174 

can influence recruitment parameter estimates. With the incorporation of aging error, the 175 

probability in Equation 8 gets expanded to  176 
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where ( )baT |  is the probability that an individual identified as being age a is actually age b.  178 

Equation 9 does not include parameters associated with calculating the aging error matrix 179 

because for simplicity we treat these as known values. In principle, we could include the data 180 

needed to estimate the aging error, and estimate parameters needed to construct the matrix in 181 

conjunction with the recruitment change parameters, which would necessitate modification to 182 

Equation 9.  183 



We programmed the estimation approach described above in AD Model Builder 184 

(Fournier et al. 2012). In previous work (Brenden et al. 2015a), we found that accuracy and 185 

precision of source contribution estimates to mixture fisheries derived from AD Model Builder 186 

were similar to estimates obtained from other routinely used estimation packages for GSI 187 

analyses. When estimating τ, γ, and υ, we imposed the constraint that the sums of the elements of 188 

each must equal 0. Without these constraints, solutions to τ and γ were not unique and different 189 

values could produce the exact same Ps given equation 7. The constraint on υ was not necessary 190 

to produce unique parameter estimates but it reduced the number of estimated parameters and 191 

therefore affected measures of uncertainty of point estimates while having no real consequence 192 

on resulting relative recruitment estimates.    193 

Under a Bayesian estimation approach, the posterior probability distributions for the 194 

unknown parameters can be specified as 195 

( ) ( ) ( ) ( ) ( ) ( )υγτQυγτQυγτQ ππππππ Y|,,,|XYX,|,,, ∝ ,     (10) 196 

where π(τ), π(γ), and π(υ) are the prior probability distributions assigned to the parameters 197 

describing changes in relative recruitment levels, )Y|(Qπ is the prior probability distribution for 198 

allele relative frequencies of the baseline populations (Q) given the collection and genotyping of 199 

individuals from the baseline populations (Y), and ( )υγτQ ,,,|Xπ is as defined in equations 9 or 200 

10 depending on whether aging error occurs. Our specification of )Y|(Qπ  followed the 201 

multinomial-Dirichlet hyperparameter updating procedure described in Corander et al. (2006). 202 

For π(τ) and π(γ), uniform distributions with lower and upper limits of -5.0 and +5.0, 203 

respectively, were assumed. The intent of the uniform prior distribution was to provide weakly 204 

informative priors so that estimates of τ and γ would largely be influenced by the data, while 205 

ensuring a proper posterior distribution and avoiding individual effects getting stuck at extremely 206 



high or low values. Given that these parameters influence relative recruitment on a logarithmic 207 

scale, the range of relative recruitments allowed by the uniform distribution is over 22,000 fold. 208 

For π(υ), a normal distribution with a mean of 0.0 and standard deviation of 3.0 was assumed. 209 

This too was intended to be weakly informative but with a tendency toward a zero estimate in the 210 

absence of other information. Thus, we treated the υ as random effects from a shared stochastic 211 

process, with average levels (i.e., 0) being more likely than extreme ones.  Preliminary 212 

evaluations suggested that with sufficiently large sample sizes from the mixture, the standard 213 

deviation for the normal prior distribution on π(υ) could be estimated as part of the model fitting 214 

process, but at smaller sample sizes models that attempted to estimate the standard deviation 215 

would not converge on a solution. We therefore elected to fix the standard deviation at a value 216 

(3.0) corresponding to a relatively uninformative prior distribution for υ.  217 

 218 

Baseline simulations 219 

Simulation factor levels. Our simulation framework generated for a single simulation (1) 220 

expected genotype proportions by source and loci, (2) expected age compositions by source and 221 

sampling year, (3) observed genotype samples from the sources, and (4) observed genotype and 222 

age composition data from the mixture (Fig. 2, see Appendix A for technical details). Each 223 

individual simulation for a specific scenario was defined by specified inputs and produced 224 

different expected genotype proportions and different expected age compositions due to random 225 

factors such as number of loci, number of alleles for each locus, and temporal and spatial 226 

variation in recruitment, and given these expectations there was random variation in the resulting 227 

source and mixture data (Fig. 2). The estimation model was then applied to each set of simulated 228 

data (Fig. 2).  229 



We used the simulation model to generate source and mixture observations under a range 230 

of conditions, including two numbers of sources (6 or 12 populations), three levels of genetic 231 

divergence (θ ) among sources (0.01, 0.06, or varied [θHigh = 0.051, θLow = 0.01], two levels of 232 

difference in the source effects (low or high), three levels of total temporal variation in (0.7, 1.0., 233 

or 2.0) (see Appendix A), three variation ratios (1:4, 1:1, 4:1) dictating how total temporal 234 

recruitment variation was allocated between the two sources of variation (e.g., 1:4 means 20% of 235 

total temporal variation was allocated to year-class variation and 80% was allocated to source × 236 

year-class variation), two levels of sampling duration (two or six years), and three mixture 237 

sample sizes (100, 300, or 500 fish per year). Under a low difference in source effects, the 238 

source-specific deviations (τi) were set such that the largest difference in expected recruitment 239 

between any two sources contributing to the mixture would be 10-fold (i.e.,240 

( )( ) ( )( ) 10minexpmaxexp =ττ ) (Table 1). Under a high difference in source effects, the τi values 241 

were set such that the largest difference in expected recruitment between any two sources 242 

contributing to the mixture would be 40-fold (i.e., ( )( ) ( )( ) 40minexpmaxexp =ττ ) (Table 1). 243 

We used a full factorial design so that all 648 combinations of factors levels were 244 

evaluated, with 1,000 simulations conducted for each factor-level combination. For all 245 

simulations, we assumed sample sizes of 200 fish per source for the calculations of allele relative 246 

frequencies, age 2 was the age of recruitment with ages of individuals collected from the mixture 247 

ranging from age 2 to age 9, and that there was no aging error. Previous research found the 248 

source sample sizes ranging from 50 to 200 fish per source explained very little of the variability 249 

in genetic stock identification results (Brenden et al. 2015a), which was why we did not explore 250 

varying source sample sizes. The age range assumed in the simulations was arbitrary but was 251 

mid-range to the age ranges incorporated in stock assessment models used for managing lake 252 



trout, walleye, Chinook salmon (Oncorhynchus tshawytscha) and lake whitefish (Coregonus 253 

clupeaformis) populations in the Great Lakes (Brenden et al. 2011; Berger et al. 2012; Brenden 254 

et al. 2012; Fielder and Bence 2014; Tsehaye et al. 2014). For each simulation, the number of 255 

loci used to genotype source and mixture fish was randomly selected from between 10 and 30 256 

loci. Similarly, the number of alleles was randomly selected for each locus and simulation and 257 

could range from 5 to 25 alleles.  258 

Models were fit by highest posterior density estimation, meaning that Markov Chain 259 

Monte Carlo (MCMC) procedures were not used to characterize the full posterior probability of 260 

the parameters. Highest posterior density estimation is also referred to as penalized maximum 261 

likelihood estimation. We chose to use this estimation approach because for the simulations a 262 

total of 648,000 models were fit and thus it was time prohibitive to conduct a full Bayesian 263 

estimation of the models. The objective function for the estimation models corresponded to the 264 

sum of the negative loge likelihood (i.e., negative loge of Equation 8) and prior probability 265 

distributions for the τ, γ, and υ. As previously indicated, models were fit in AD Model Builder 266 

(Fournier et al. 2012). Models were considered to have converged on a solution when the 267 

maximum gradient of the parameters with respect to the objective function was less than 1.0E-3. 268 

 269 

Performance measures. For each simulation, we calculated the Pearson correlation between 270 

estimated and true loge relative recruitments across all sources.  A multifactor ANOVA model 271 

was fit to the correlations from the simulations to assess the importance of the investigated 272 

factors. We used eta-squared ( 2η ) values to estimates of the amount of variability in correlations 273 

accounted for by main effects and all main-effect interactions (i.e., up to seventh-order 274 

interactions) (Corell et al. 2012). The median and interquartile range (IQR) of the correlations in 275 



the recruitment values from across all simulations conducted for a particular combination of 276 

factor levels were used as measures of accuracy and precision, respectively. Only factor level 277 

combinations (e.g., main factors, second-order interactions) that were identified as being 278 

important from the multifactor ANOVA 2η  values were used in summarizing results.  279 

 280 

Sensitivity analyses 281 

Sensitivity of the estimation approach to errors in total mortalities and aging uncertainty 282 

was explored to assess robustness of the method. Based on the results of the baseline simulations 283 

(see below), sensitivity analyses were conducted for the two source numbers (6 or 12 sources), 284 

the three levels of genetic divergence among sources (0.01, 0.06, or varied), and three mixture 285 

sample sizes (100, 300, or 500 fish). All sensitivity simulations assumed a two-year sampling 286 

duration, a high difference in source population effect, a total temporal variation in recruitment 287 

of 2.0, and a 4:1 ratio for how total temporal variation in recruitment was allocated between 288 

year-class and source × year-class variation. As in the base simulations, we assumed sample 289 

sizes of 200 fish per source, ages of individuals collected from the mixture ranging from age 2 to 290 

age 9, the number of loci used to genotype source and mixture fish was randomly selected from 291 

between 10 and 30 loci for each iteration, and the number of alleles was randomly selected for 292 

each locus and iteration and could range from 5 to 25 alleles.  293 

In terms of sensitivity to incorrect assumptions regarding total mortality, we considered 294 

three different scenarios. In the first scenario (random mortality scenario), we randomly 295 

generated total mortalities for each source, year-class, and age from normal distributions with a 296 

mean of 0.30 and a standard deviation of 0.04 for simulation data. In the second scenario 297 

(autocorrelated mortality scenario), age-specific deviations in total mortalities from an average 298 



rate of 0.30 for each source and year-class were generated from a first-order autoregressive 299 

process [AR(1)]. Values from an AR(1) process with a mean of 0.0, autoregressive coefficient of 300 

0.8, and innovations variance of 0.15 were generated, exponentiated, and multiplied by 0.30. In 301 

the third scenario (population mortality scenario), age-specific total mortalities for the sources 302 

were generated from normal distributions with means for the different sources ranging from 0.20 303 

to 0.40 at equispaced intervals (0.04 interval for 6 sources; 0.0182 interval for 12 sources) and 304 

standard deviations of 0.04. For each mortality sensitivity scenario, we continued to assume 305 

source- and age-specific total mortalities of 0.30 in the estimation program, meaning that we 306 

assessed the consequences on estimation performance when assumed mortalities were different 307 

(and more simplistic) than the mortality rates actually experienced by the source populations. 308 

For aging uncertainty, we generated an aging error matrix based on the method of 309 

Richards et al. (1992) whereby the distribution of estimated ages given expected true ages was 310 

modeled through discretized normal distributions. Expectations of estimated age given true age 311 

were modeled as a linear function of true age with an intercept of 0 and a slope of 1.0 (Richards 312 

et al. 1992). The standard deviation of estimated ages ( aσ ) was modeled as a linear function of 313 

the expected true age with an intercept of 0 and a slope of 0.06 (low aging error) or 0.10 (high 314 

aging error). With a slope of 0.06, aging uncertainty ranged from 0% for younger ages to 315 

approximately 20% (i.e., 10% of individuals underestimated in age by and 10% overestimated in 316 

age) for older ages. With a slope of 0.10, aging uncertainty ranged from 0% for younger ages to 317 

approximately 50% (i.e., 25% of individuals underestimated in age and 25% of individuals 318 

overestimated in age) for older ages. Observed ages of mixture individuals were assigned by 319 

random sampling from multinomial distributions with probabilities equal to the age frequencies 320 

generated from the aging error matrix. For estimating recruitment levels under the aging 321 



uncertainty sensitivity scenarios, we considered situations where aging was assumed to be 322 

accurate in the estimation model (i.e., )|( baT set equal to an identity matrix) and where the 323 

actual aging error matrix generated from the discretized normal distribution process described 324 

above was incorporated in the estimation model.  325 

 As part of the aging uncertainty analyses, we found that with high aging error the 326 

incorporation of the actual aging error matrix performed worse than when aging was assumed to 327 

be accurate (see Sensitivity analyses results). This was most noticeable at small sample sizes. To 328 

verify that this result was a sample size issue, we conducted additional sensitivity simulations 329 

with mixture sample sizes as large as 3000 fish per year for high aging error to determine 330 

whether with large enough sample sizes the incorporation of the actual aging error matrix would 331 

perform better than when aging was assumed to be accurate. 332 

  333 

Empirical applications 334 

 For the empirical applications, we used a full Bayesian approach for model estimation so 335 

as to better characterize uncertainty in relative recruitments for the sources. Posterior probability 336 

distributions of the relative recruitments for each source and year-class combinations were 337 

characterized by MCMC simulations through a Metropolis-Hastings algorithm (Fournier et al. 338 

2012). For the walleye application (described below), five independent MCMC chains were run 339 

for 500,000 steps sampling every 100th step, with the initial 2,500 saved steps discarded. For the 340 

lake trout application (described below), five independent MCMC chains were run for 5,000,000 341 

steps sampling every 2,000th step, with the initial 500 saved steps discarded. Different chain 342 

lengths and sampling frequencies were necessary because the lake trout model was slower to 343 

converge and exhibited greater autocorrelation in the chain values. For both the walleye and lake 344 



trout examples, one of the MCMC chains was initialized at the mode of the posterior probability 345 

distributions for each parameter, whereas for the other four chains initialization values were 346 

randomly generated from uniform distributions with lower and upper bounds of -5 and 5, 347 

respectively, while imposing the zero-sum constraint on υγτ  and , ,  as described in the Estimation 348 

approach section.  The random initialization values were generated in R (R Core Team 2014) 349 

using the RandVec function in the “Surrogate” package (Van der Elst et al. 2017).  Convergence 350 

of each MCMC chain on stable distributions for all relative recruitments was evaluated 351 

graphically with trace plots and analytically with Z-score tests to test differences between the 352 

means of the first 10% and last 50% of the saved chains (Geweke 1992). Additionally, we 353 

compared effective sample size of the saved MCMC chains with the actual chain sample sizes as 354 

a method for evaluating autocorrelation among the saved samples. If each MCMC chain passed 355 

the convergence diagnostics, convergence of the five MCMC chains on the same stationary 356 

distribution was evaluated graphically by overlaying traceplots and analytically through potential 357 

scale reduction factors (Gelman and Rubin 1992).   The saved iterations from the five MCMC 358 

chains were then combined and the median of the combined chains was used as the point 359 

estimates for the relative recruitments.  Uncertainty in the relative recruitments was based on the 360 

95% highest posterior density intervals calculated across the combined MCMC chains. Similar 361 

conclusions would have been reached if we had used highest posterior density estimates (i.e., 362 

mode of the posterior distributions) as point estimates for the relative recruitments. All MCMC 363 

diagnostic measures were conducted in R using the “coda” package (Plummer et al. 2006). 364 

 365 

Saginaw Bay, Lake Huron Walleye.A description of the sampling and laboratory methods used 366 

on the Saginaw Bay, Lake Huron walleye mixture and contributing sources is provided in 367 



Brenden et al. (2015b). Briefly, fin-clip tissue samples were collected from seven source 368 

populations located in Lakes Huron, St. Clair, and Erie. Multiple lines of evidence suggested 369 

there was just two genetically distinct sources [Lake Huron source (represented by fish from the 370 

Tittabawassee River) and a Lakes Erie/St. Clair source]. A total of 382 individuals from the 371 

sources were genotyped for the determination of allele frequencies (Lake Huron: n=95; Lakes 372 

Erie/St. Clair: n=287). Source tissue samples were genotyped at 10 microsatellite loci: Svi4, 373 

Svi17, Svi18 and Svi33 (Borer et al. 1999); SviL2, SviL5, SviL6 and SviL8 (Wirth et al. 1999); 374 

and Svi6 and Svi7 (Eldridge et al. 2002). Amplification conditions are described in Brenden et al. 375 

(2015b), as are results pertaining to number of alleles, allelic richness, and observed and 376 

expected heterozygosity.  377 

 Tissue samples from walleyes from the Saginaw Bay recreational fishery were collected 378 

in 2008 and 2009 between the months of February and August. Ages of individuals collected 379 

ranged from 3 to 15. For this study, we limited our analysis to walleye from the mixture that 380 

were between age 3 and age 7 and that were collected between June to August. The oldest 381 

walleye collected in 2008 was age 6 so based on available data we were able to index 382 

recruitment for the 2002 to 2006 year classes. Tissue samples were available for a total of 262 383 

individuals from the mixture (2008: n=138 fish; 2009: n=124 fish). We did not include walleye 384 

collected between February and May as based on the results of Brenden et al. (2015b) there were 385 

potential differences in migration rates between young and old walleye from the Lakes Erie/St. 386 

Clair sources during these months, which would have influenced recruitment results. Mixture 387 

tissue samples were genotyped using the same 10 microsatellite loci identified above for the 388 

sources. Total instantaneous mortality rates for the corresponding year class and ages for the 389 



sources were taken from Fielder and Bence (2014) and WTG (2014) and we assumed that aging 390 

error was negligible.  391 

Estimated recruitment levels of the walleye source populations from our estimation 392 

approach for the 2002 to 2006 year classes were compared to corresponding recruitment 393 

estimates from SCAA models developed by Fielder and Bence (2014) for Lake Huron and WTG 394 

(2014) for Lake Erie. Comparisons between recruitment levels were based on Pearson 395 

correlations.  396 

 397 

Northern Lake Michigan Lake trout.As previously indicated, the source data for the lake trout 398 

empirical application consisted of different hatchery strains that have been stocked in Lake 399 

Michigan. An in-depth description of the hatchery source data and genotyping is provided in 400 

Appendix B. For these analyses, there were four hatchery strains for which there was sufficient 401 

information to distinguish among them. These hatchery strains were Lewis Lake, Seneca Lake, 402 

Green Lake, and Lake Superior. The Lake Superior hatchery strain was an aggregation of four 403 

separate hatchery strains derived from sources in Lake Superior (Isle Royale, Apostle Island, 404 

Marquette, Traverse Island) for which there was difficulty differentiating between given 405 

available data (Appendix B). A total of 669 individuals from the strains were genotyped for the 406 

determination of allele frequencies (Lewis Lake: n=98; Seneca Lake: n=101; Green Lake: 407 

n=100; Lake Superior: n=370). Hatchery strain tissue samples were genotyped at 10 408 

microsatellite loci: Sfo1, Sfo12, and Sfo18 (Angers et al. 1995); Scou19 (Taylor et al. 2001); 409 

Oneµ9 and Oneµ10 (Scribner et al. 1996); Ogo1a (Olsen et al. 1998); Ssa85 (O’Reilly et al. 410 

1996); and Sfo-C24 and Sfo-D75 (King et al. 2012).  411 



The mixture samples for the lake trout application came from fin tissue samples collected 412 

during fishery independent surveys and commercial fishery operations in the MM3 statistical 413 

district in northern Lake Michigan (Fig. 2). Tissue sample were collected between the months of 414 

April and September in 2009 and 2010. Mixture tissue samples were genotyped using the same 415 

10 microsatellite loci identified above for the hatchery strains. We restricted our analyses to lake 416 

trout ranging in age from 2 to 7. The oldest lake trout collected in 2009 was age 6 so based on 417 

available data we were able to index recruitment for the 2003 to 2008 year classes. Ages were 418 

assigned to lake trout through either scale readings or based on identifying fin clips (i.e., all lake 419 

trout stocked in Lake Michigan in a given year are given a particular combination of fin clips). 420 

Tissue samples were available for a total of 514 individuals from the mixture (2009: n=150 fish; 421 

2010: n=364 fish). For this analysis, we assumed that lake trout aging error was negligible. 422 

Age-specific mortality rates for the estimation model were taken from an SCAA model 423 

that is used for setting allowable harvests in the management unit (Modeling Subcommittee, 424 

Technical Fisheries Committee 2014). Past research has suggested that lake trout hatchery strains 425 

may experience differential survival possibly as a consequence of strain-specific differences in 426 

avoidance of sea lamprey Petromyzon marinus parasitism (Elrod et al. 1995, McKee et al. 2004). 427 

While we do not discount the possibility of strain-specific differences in survival, strain-specific 428 

estimates of mortality rates for lake trout in Lake Michigan were not available to incorporate in 429 

this analysis.  430 

Estimated recruitment levels of the lake trout hatchery strains from our estimation 431 

approach was compared to the total number of lake trout stocked by hatchery strain for the 432 

corresponding year classes we were able to index. The stocking information were from the Great 433 

Lakes Fish Stocking Database (FWS/GLFC 2010). Although the lake trout mixture data were 434 



from northern Lake Michigan, we considered stocking that occurred throughout Lake Michigan 435 

given previous studies have found high dispersal rates of stock lake trout in the Great Lakes 436 

(Adlerstein et al. 2007). 437 

  438 

Results 439 

Baseline simulations 440 

 The 2η values obtained from the multifactor ANOVA model fit to the correlations 441 

between estimated and true loge relative recruitments indicated that main effects had the largest 442 

influence on simulation results. The largest 2η  values for main effects were due to mixture 443 

sample size ( 2η  = 23.6%), number of sources ( 2η  = 15.1%), and genetic divergence among the 444 

source populations ( 2η  = 13.8%). Conversely, 2η  values were 6.0% for duration of sampling, 445 

2.0% for level of difference in source effects, 1.3% for total temporal recruitment variation, and 446 

1.1% for how total temporal recruitment variation was allocated between year-class and source × 447 

year-class variation. The largest 2η  values for second- or higher-order interactions among main 448 

effects was 0.1%, with the vast majority of values being less than 0.01%, suggesting that 449 

interactions among main effects were unimportant. Consequently, we chose to summarize 450 

correlation results from the simulations only by main effect-factor levels. 451 

 Overall, the estimation approach performed well in estimating recruitment levels for the 452 

sources. Across all simulations, the median correlation between estimated and true loge 453 

recruitment levels for the sources was 0.849, with 2.5 and 97.5 percentile in correlations equal to 454 

0.613 and 0.951, respectively. The correlation between estimated and true recruitment levels on a 455 

non-logarithmic scale was even greater (median correlation=0.938; 2.5 and 97.5 percentile in 456 



correlations equal to 0.659 and 0.994). As was expected, performance of the estimation approach 457 

both with respect to accuracy and precision improved as mixture sample sizes and genetic 458 

divergence among the sources increased. Median correlations in loge recruitment levels were 459 

0.788, 0.860, and 0.887 for mixture samples sizes of 100, 300, and 500 fish per year, 460 

respectively, whereas IQR in correlations were 0.127, 0.093, and 0.080 for these same sample 461 

sizes (Fig. 3). As genetic divergence among the sources increased from 0.01 to 0.06, median 462 

correlations in loge recruitment increased from 0.810 to 0.887, whereas IQR in correlations 463 

decreased from 0.127 to 0.080 (Fig. 3). The varied genetic divergence level in which each source 464 

had relatively low levels of genetic divergence with some of the sources and relatively high 465 

levels of genetic divergence with the other sources had accuracy and precisions levels that were 466 

intermediate of the results for 0.01 and 0.06 genetic divergences (Fig. 3).  467 

As number of simulated sources increased, the accuracy and precision of the estimation 468 

approach decreased (6 sources: median correlation = 0.882; IQR in correlations = 0.087; 12 469 

sources: median correlation = 0.814; IQR in correlations = 0.118) (Fig. 3). Conversely, the 470 

accuracy and precision of the estimation approach increased as sampling duration increased (2 471 

year duration: median correlation = 0.828; IQR in correlations = 0.124; 6 year duration: median 472 

correlation = 0.868; IQR in correlations = 0.097) (Fig. 3). Likewise, accuracy and precision 473 

improved with increasing level of difference in source effects and total temporal variation in 474 

recruitment. Median correlations in loge recruitment were 0.835 and 0.863 and IQR in 475 

correlations were 0.116 and 0.105 for low and high differences in source population effects, 476 

respectively (Fig. 3). Median correlations in loge recruitment were 0.839, 0.847, and 0.860 and 477 

IQR in correlations were 0.122, 0.114, and 0.103 for total temporal variations in recruitment of 478 

0.7, 1.0, and 2.0, respectively (Fig. 3).  479 



Accuracy and precision decreased slightly when total temporal variation in recruitment 480 

was allocated more to source × year-class variation than to year-class variation (Fig. 3). When 481 

the allocation ratio between year-class class variation and source × year-class variation was 1:4 482 

(i.e., 20% of total variation allocated to year-class variation and 80% of total variation allocated 483 

to source × year-class variation), the median correlation and IQR in correlations were 0.837 and 484 

0.122, respectively. Conversely with a 1:1 ratio the median correlation and IQR in correlations 485 

were 0.850 and 0.111, respectively, and were 0.860 and 0.104 for a 4:1 ratio (Fig. 3).  486 

 487 

Sensitivity analyses 488 

 Accuracy and precisions of the proposed estimation approach were insensitive to the 489 

mortality scenarios that we considered as part of our sensitivity evaluations. Median correlations 490 

and interquartile ranges in the correlations for these sensitivity scenarios deviated very little from 491 

baseline simulation runs (Fig 3).  492 

The estimation approach was insensitive to low aging error (i.e., the standard deviation of 493 

estimated ages was modeled as a linear function of the expected true age with an intercept of 0 494 

and a slope of 0.06) regardless of whether aging was assumed to be accurate or whether the 495 

actual aging error matrix was incorporated in the estimation model (Fig. 4). For the scenario with 496 

high aging error (i.e., the standard deviation of estimated ages was modeled as a linear function 497 

of the expected true age with an intercept of 0 and a slope of 0.10), results depended on how 498 

aging error was treated in the estimation model. When accurate aging was assumed in the 499 

estimation model, median correlation in loge recruitment declined by 0.03 to 0.05 and the 500 

interquartile range in correlations increased by 0.01 to 0.02 across the range of evaluated factors 501 

for the simulations (Fig. 4). When the actual aging error matrix was incorporated in the 502 



estimation model, performance of the estimation approach with respect to both accuracy and 503 

precision was worse compared to when aging was assumed to be accurate at small mixture 504 

sample sizes (Fig. 4). At the smallest mixture sample sizes, median correlation in loge 505 

recruitment declined by as much as 0.09 across the range of evaluated factor. With larger 506 

mixture sample sizes, accuracy of the estimation approach when the actual aging error matrix 507 

was incorporated in the approach was similar to when accurate aging was assumed (Fig. 4). 508 

Precision of the estimation approach as measured by the interquartile range of the correlations 509 

also improved with larger mixture sample sizes, although in all cases precision was worse than 510 

when accurate aging was assumed (Fig. 4). In the follow-up simulations with mixture sample 511 

sizes as large as 3,00 fish per hear, we found that incorporating the actual aging error matrix in 512 

the estimation approach resulted in more accurate and precise estimates of loge recruitment levels 513 

compared to when accurate aging was incorrectly assumed in the estimation model (results not 514 

shown).  515 

 516 

Empirical applications 517 

Saginaw Bay, Lake Huron Walleye.All five MCMC chains were judged to have converged on 518 

stationary and stable distributions for the relative recruitments for each source and year-class 519 

combination. Examination of trace plots indicated that each of the MCMC chains were well 520 

mixed for each relative recruitment estimate (Appendix C), and the Z-score test statistics ranged 521 

from approximately -1.72 to 1.88. Effective sample sizes of the MCMC chains for all relative 522 

recruitments were greater than 2,100.  Overlaying the traceplots for all five MCMC chains 523 

suggested that the chains had converged on the same stationary distributions for the relative 524 

recruitments for each source and year-class combination (Appendix C).  Additionally, the upper 525 



95% confidence interval for the potential scale reduction factors calculated from the five MCMC 526 

chains for all relative recruitments was less than 1.1, suggesting that all chains had converged on 527 

the same stationary distributions.  Effective sample sizes for the combined MCMC chains for all 528 

relative recruitments were greater than 10,900. 529 

  The pattern in relative recruitments that were generated from our estimation approach for 530 

Lake Huron closely corresponded with the recruitment estimates from the SCAA model by 531 

Fielder and Bence (2014) for the 2002 to 2006 year classes. The correlation between recruitment 532 

estimates was 0.921. Recruitment levels from both models increased from 2002 to 2003, but then 533 

decreased steadily from 2003 to 2006 (Fig. 5). There was also fairly strong correspondence in the 534 

estimated recruitments for Lakes Erie/St. Clair, although the correlation in recruitment levels for 535 

this source was 0.567 (Fig. 5). Our proposed approach predicted recruitment increased from 536 

2002 to 2004 and then declined from 2004 to 2006. The SCAA model estimated a sharp increase 537 

in recruitment from 2002 to 2003 and an overall decline in recruitment from 2003 to 2006. 538 

Whereas our approached predicted that the recruitment level in 2004 was comparable to that of 539 

2003, the SCAA model for Lakes Erie/St. Clair predicted that recruitment in 2004 was the 540 

second lowest of the time series (Fig. 5).  541 

 542 

Northern Lake Michigan Lake trout. All five MCMC chains converged on stationary and 543 

stable distributions for the relative recruitments for each source and year-class combination. 544 

Examination of trace plots indicated that each of the MCMC chains were well mixed for each 545 

relative recruitment estimate (Appendix C), and the Z-score test statistics ranged from 546 

approximately -1.23 to 1.88. Effective sample sizes of the MCMC chains for all relative 547 

recruitments were greater than 1,300.  Overlaying the traceplots for all five MCMC chains 548 



suggested that the chains had converged on the same stationary distributions for the relative 549 

recruitments for each source and year-class combination (Appendix C).  Additionally, the upper 550 

95% confidence interval for the potential scale reduction factors calculated from the five MCMC 551 

chains for all relative recruitments was less than 1.1, suggesting that all chains had converged on 552 

the same stationary distributions.  Effective sample sizes for the combined MCMC chains for all 553 

relative recruitments were greater than 8,000. 554 

 Correspondence between recruitment estimates of the lake trout hatchery strains and the 555 

actual stocking levels in Lake Michigan differed by strain. The strongest correspondence 556 

between relative recruitments and stocking levels was for the Lewis Lake strain. The correlation 557 

between estimated recruitments and stocking levels for the Lewis Lake strain was 0.444, with the 558 

greatest discrepancy occurring for the 2007 year class (Fig 6). Our estimation approach predicted 559 

increased recruitments from 2003 to 2005, but decreased recruitments from 2005 to 2008.  560 

Conversely, the actual stocking rate of this hatchery strain for these year classes was fairly static 561 

between 2003 and 2007 and then decreased in 2008.  For the Lake Superior strain, the correlation 562 

between estimated recruitment and stocking level was 0.334. Our estimation approach predicted 563 

recruitment levels increased from 2003 to 2004 but then decreased from 2004 to 2008 (Fig. 6), 564 

whereas the stocking rate for this hatchery strain increased from 2003 to 2006 and then 565 

decreased from 2006 to 2008.  For the Seneca Lake hatchery strain, there was a negative 566 

correlation (-0.278) between our estimated recruitment levels and the stocking levels for this 567 

strain, although this negative correlation was largely a result of a large difference between 568 

relative recruitment and stocking level for the 2008 year class (Fig. 6).  For the Green Lake 569 

strain, there also was a negative correlation (-0.529) between relative recruitments and stocking 570 



levels. Whereas the stocking levels of this hatchery strain decreased from 2003 to 2008, our 571 

estimation approach predicted slightly elevated recruitments in 2006 and 2007 (Fig. 6). 572 

 573 

Discussion 574 

 Several quantitative approaches for indexing historical recruitment levels based 575 

exclusively on sampling of adult fish have been proposed and applied to fish populations (Guy 576 

and Willis 1995; Maceina 1997; Isermann et al. 2002; Tsehaye et al. 2016). The methodological 577 

approach proposed herein is similar to that of Tsehaye et al. (2016) in that it is meant for 578 

indexing recruitment for several sources simultaneously, which can provide beneficial 579 

information for management, as preserving genetic diversity is important for promoting 580 

resilience of populations to perturbations (Stephenson 1999). Both our approach and that of 581 

Tsehaye et al. (2016) are based on incorporating age or surrogates of age in commonly used 582 

model-based GSI methods. Thus, a prerequisite for both approaches is the availability of DNA 583 

markers that can be used to genotype individuals from both sources and mixtures. While this at 584 

one time may have been problematic, the development and widespread use of high throughput 585 

markers, such as single nucleotide polymorphisms (SNPs), have made it possible to easily 586 

identify large numbers of loci and cost-efficiently characterize variation in these loci for many 587 

individuals (Larson et al. 2014). Thus, our proposed approach, as well as that of Tsehaye et al. 588 

(2016), has the potential for broad applicability considering that the occurrence of intermixed 589 

fisheries is increasingly being recognized as a common feature in both marine and freshwater 590 

fish populations (Policansky and Magnuson 1998; Kerr et al. 2010; Brenden et al. 2015b).  591 

 Our proposed approach differs from that of Tsehaye et al. (2016) primarily in the 592 

assumed underlying dynamics of the source populations. The approach of Tsehaye et al. (2016) 593 



was described as being applicable to long-lived species that spawn intermittently and that 594 

experience high mortality rates during early life stages, but that have low mortality rates after 595 

these critical early life periods. Such life histories were identified as likely to result in year-class 596 

strength changing fairly consistently on an annual basis. However, for many other species, 597 

recruitment levels can exhibit considerable inter-annual variation. For example, in Lake Erie 598 

walleye, 10-fold differences in estimated recruitment levels in adjacent years are common, and in 599 

some years differences in recruitment levels can be nearly 200-fold (WTG 2014). The approach 600 

we have proposed herein is intended for cases such as these, although there is nothing that would 601 

preclude its use in situations where recruitment levels changed consistently on an annual basis so 602 

long as sufficient data were available to index individual year classes. In describing their 603 

approach, Tsehaye et al. (2016) included situations where ages of individuals from mixtures 604 

were not available so lengths of individuals along with information on growth relationships for 605 

the sources were used as surrogates for age. The basis for this was that with long-lived and low 606 

mortality populations it might be difficult to obtain age estimates of from the mixture because it 607 

would require sacrificing individuals from the mixture, which might be problematic from a 608 

conservation perspective (Tsehaye et al. 2016). The estimation approach described herein could 609 

similarly be expanded to incorporate situations of using length as a surrogate if age estimates 610 

were difficult to obtain from fish collected from the mixture.  611 

 The simulations that were conducted as part of this research indicated that across a range 612 

of conditions, recruitment estimates from our estimation approach were strongly correlated with 613 

simulated recruitment levels. Both accuracy and precision of the recruitment estimates were 614 

influenced by mixture sample size and levels of genetic divergence among the sources. These 615 

same factors have been found to have the greatest influence on the performance of standard GSI 616 



models (Brenden et al. 2015a). Our proposed estimation approach is an extension of standard 617 

GSI models so this finding is perhaps not surprising. Accuracy and precision decreased when 618 

more source populations were incorporated in analyses, which we attribute to there being simply 619 

more opportunities for mistakes to arise when assigning individuals to sources. A longer 620 

sampling duration also improved accuracy and precision of the estimation approach. We attribute 621 

this finding to a longer sampling duration increasing the number of observations of the year 622 

classes upon which to make inference. For example, with a six-year sampling duration, the 623 

youngest year class in the first year of sampling will be able to be followed through to older ages 624 

with each subsequent year of sampling, which results in more accurate estimates of initial 625 

recruitment levels. We found that the approach was relatively unaffected by factors such as total 626 

temporal variation, how temporal variation was allocated between year-class and source × year-627 

class interaction variation, and level of difference in source effects. The insensitivity to these 628 

factors is encouraging as in actual applications it would be difficult to know what these factors 629 

were prior to analyses, so it would be difficult to control for them. Conversely, mixture sample 630 

size and sampling duration can be adjusted as needed, while genetic divergence between sources 631 

can be assessed ahead of time. 632 

The sensitivity analyses that we conducted as part of this research indicated that the 633 

estimation approach was robust to assumptions about total mortality, but that large aging error 634 

could influence recruitment estimates. The largest aging error we considered in our sensitivity 635 

analyses was a case where only ~50% of older fish were accurately aged. Even for this scenario, 636 

median recruitment correlations were in all cases greater than 0.60 suggesting that even with this 637 

level of aging uncertainty there was still a fairly strong association between estimated and 638 

assumed recruitment levels. We considered two approaches in our sensitivity analyses involving 639 



aging error: one where aging was assumed to be accurate and one where the actual aging error 640 

matrix used to simulate observations from the mixture was incorporated in the estimation 641 

approach. Assuming that aging was accurate performed better at small mixture sample sizes, but 642 

at larger mixture sample sizes the two approaches performed similarly with respect to accuracy. 643 

At very high sample sizes, incorporating the actual aging error matrix that was used to simulate 644 

the mixture fishery data resulted in estimates that were very similar to simulations where no 645 

aging error occurred. Our explanation for why incorporating the actual aging error matrix used to 646 

simulate the mixture fishery data performed poorly at low mixture sample sizes samples is that 647 

with small samples the amount of aging error observed in the simulated mixture data could be 648 

considerably different from the actual aging error matrix because of the stochasticity in the 649 

generating process. Conversely, as mixture sample size increased, there was closer agreement 650 

between the observed aging error and the actual aging error matrix used to simulate the data. 651 

This result suggests there may be danger in simply assuming an aging error matrix and that if 652 

there is concern about error then age validation should be conducted for samples collected from 653 

the mixture. As well, with small sample sizes older age classes may be uncommon in the mixture 654 

and the incorporating of errors may make these observations highly influential data points. This, 655 

an additional option for dealing with high aging uncertainty would be to restrict analyses to 656 

younger fish that can presumably be aged with greater accuracy and perhaps sample over longer 657 

durations. Other quantitative approaches for indexing recruitment levels based on sampling of 658 

adult fish (e.g., Isermann et al. 2002) can also be affected by aging uncertainty, so the sensitivity 659 

of our proposed estimation approach to high levels of aging error should not be construed as a 660 

major hindrance to its adoption. 661 



  The empirical applications of our estimation approach found that there was close 662 

agreement between our recruitment estimates and recruitment estimates from SCAA models for 663 

walleye from Lake Huron and Lake Erie. However, the level of agreement between our estimates 664 

and the stocking history for Lake Michigan for the lake trout example varied among the hatchery 665 

strains. The discrepancy between our recruitment estimates and stocking level of the hatchery 666 

strains is perhaps not surprising given stocking history and past research into ecological 667 

differences among different hatchery strains. The stocking history of lake trout strains in the 668 

Great Lakes is complex. Individual strains are stocked at different locations throughout the lake, 669 

multiple strains are stocked at individual sites, and both fall fingerlings and spring yearlings are 670 

stocked (FWS/GLFC 2010). Additionally, previous research on lake trout movement in the Great 671 

Lakes has found dispersal rates from stocking sites to vary by area (Adlerstein et al. 2007), 672 

between fall fingerlings and spring yearlings (Elrod 1987), and between strains (Elrod 1987; 673 

Elrod et al. 1996a) and for habitat selection to differ between strains (Elrod et al. 1996b). 674 

Additionally, mortality rates of hatchery strains may differ (McKee et al. 2004) possibly due to 675 

differences in growth (Elrod et al. 1996b; McKee et al. 2004) and/or vulnerability and 676 

susceptibility to attacks by sea lamprey Petromyzon marinus (Schneider et al. 1996). Large-scale 677 

ecosystem changes in the Great Lakes, including major reductions in prey fish population 678 

abundances in Lake Huron (Riley et al. 2008), also may be contributing to greater movement of 679 

piscivores from Lake Huron to Lake Michigan (Clark et al. 2016). There is also the potential for 680 

errors or omissions in the stocking database from the which the strain-specific stocking numbers 681 

were compiled (FWS/GLFC 2010).  Consequently, the total number of lake trout stocked of a 682 

particular year class and hatchery strain in Lake Michigan in and of itself is likely not 683 

representative of actual recruitment levels for the strains.  684 



 Our proposed estimation approach makes several assumptions and prior to its application 685 

consideration should be given to their appropriateness. As with most model-based GSI 686 

approaches, our approach assumes that the sources are in Hardy-Weinberg equilibrium. If the 687 

source deviate from this assumption, then actual genotype frequency of individuals in the 688 

mixture may deviate from expectation and this could influence recruitment estimates. Therefore, 689 

sources should be tested for deviations from Hardy-Weinberg equilibrium prior to application of 690 

our approach. An additional implicit assumption is that source-specific migration rates to the 691 

mixture do not vary by age. As well, if individuals are collected from the mixture in more than 692 

one sampling year, then the approach assumes that movement rates do not vary temporally. If 693 

movements do vary by age or time, than recruitment estimates could be affected. If external 694 

estimates of movement rates are available, than these rates could be incorporated in the 695 

mathematical representation of the underlying population-specific processes affecting abundance 696 

levels. Unless there is interest in making inter-population recruitment comparisons, knowing 697 

how sources differ with respect to migration rates to the mixture is not necessary, although again 698 

these rates could be incorporated in order for such comparisons to be conducted. Similarly, the 699 

estimation approach assumes that vulnerability to the sampling gear used to collect individuals 700 

from the mixture does not differ by age or over time although if external estimates of 701 

vulnerability were available they could be incorporated in the model. As described here, the 702 

approach assumes that all sources contributing to the mixture are included in the analysis. We 703 

envision our proposed approach could be expanded to account for the possibility of unknown 704 

sources contributing individuals to mixtures similar to how regular genetic stock identification 705 

models have been expanded to account for this potential (Smouse et al. 1990; Prichard et al. 706 

2000; Pella and Masuda 2006). 707 



 In conclusion, the estimation approach described and evaluated in this research is a 708 

general approach for evaluating relative recruitment levels of sources contributing to mixtures. It 709 

is based on the incorporation of ages in GSI models and can accommodate aging uncertainty, and 710 

could be expanded to use length as a surrogate for age or to accommodate the possibility of 711 

unknown sources. Although the specific applications we illustrate only evaluate within-source 712 

recruitment levels of populations that move to a common mixture, recruitment of sources relative 713 

to each other could also be addressed if additional information (e.g., rates of movement) were 714 

available. The approach is applicable to situations in which a full integrated stock assessment 715 

making use of genetic mixture data, is not feasible. We believe this will be common, given that 716 

often the time-series data needed for an integrated assessment is not available for all regions 717 

substantial numbers of fish migrate to for each source contributing to a particular mixture, and 718 

genetic data may also not be available for all such regions. The potential use of genetic data in 719 

full integrated stock assessments has been recognized (Spies and Punt 2015).  While the 720 

probability equations we present for source genotype data and the joint age and genotype data for 721 

mixtures could be adapted for use in full integrated spatial stock assessments, we believe the 722 

capability for applications to estimating recruitment trends in the absence of the data needed for 723 

such assessments is a valuable contribution in its own right. The approach was found to provide 724 

accurate relative recruitment levels across a range of factor levels with mixture sample size and 725 

genetic divergence having the largest influence on performance results. Accuracy was reduced 726 

by high aging error aging. One strategy for reducing the consequences of aging error is to reduce 727 

the age range of individuals from the mixture that are incorporated in the analyses. We are of the 728 

opinion that this estimation approach could be applied in a variety of situations where sources 729 

are contributing individuals to mixtures and thus could be a widely applicable tool for managing 730 



fish populations based on recreational, commercial, or assessment collections from mixed 731 

fisheries. 732 
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Table 1. Assumed recruitment deviations (τi) values for sources for the simulations evaluating 969 

the accuracy of our proposed estimation approach for indexing recruitment fluctuations in 970 

populations contributing to mixtures. The τi values were constant across all simulations, whereas 971 

the year-class (γ) and source × year-class deviations (υ) were randomly generated for each 972 

iteration.  973 

6 Source Populations 12 Populations 

Low difference High difference Low difference High difference 

 1) 0.833  1) 1.132  1) 0.783  1) 1.004 

 2) 0.634  2) 0.915  2) 0.698  2) 0.911 

 3) 0.387  3) 0.638  3) 0.604  3) 0.809 

 4) 0.056  4) 0.253  4) 0.501  4) 0.695 

 5) -0.440  5) -0.382  5) 0.387  5) 0.566 

 6) -1.470  6) -2.557  6) 0.257  6) 0.418 

   7) 0.108  7) 0.245 

   8) -0.067  8) 0.035 

   9) -0.280  9) -0.231 

   10) -0.550  10) -0.594 

   11) -0.900  11) -1.171 

   12) -1.519  12) -2.685 

  974 



Fig. captions 975 

Fig. 1.  Map of Lakes Michigan, Huron, St. Clair, and Erie. The hashed area in Lake Michigan is 976 

the MM3 statistical district from which lake trout were collected for the empirical 977 

application of the proposed estimation approach for indexing recruitment fluctuations in 978 

populations contributing to mixtures. The hashed area in Lake Huron is Saginaw Bay 979 

from which walleye were collected. Arrows depict the contributions from source hatchery 980 

strains (lake trout) or spawning populations (walleye) to the mixtures. The placement of 981 

the lake trout strains on the map is not intended to convey locational information as to 982 

where strains originated from or where they were stocked.  983 

Fig. 2. Flowchart of the framework used to simulate source genetic data, source relative 984 

recruitments and abundances, and observations from the source and mixtures for testing 985 

the proposed approach for estimating relative recruitments for source populations 986 

contributing to mixed fisheries. The dashed boxes and numbers correspond to steps in the 987 

simulation process described in the Simulation factor levels section. 988 

Fig. 3.  Boxplots of Pearson correlations between estimated and true loge recruitment levels 989 

across the main-effect factor levels from the simulations conducted evaluating the 990 

performance of the proposed estimation approach. Boxplot whiskers extend to the most 991 

extreme correlation that is no more than 1.5 times the interquartile range of the 992 

correlations.  993 

Fig. 4.  Median and interquartile (IQR) range of correlations between estimated and true loge 994 

recruitment levels from sensitivity analyses evaluating the robustness of the proposed 995 

estimation approach (Sensitivity scenarios: no aging uncertainty or total mortality 996 

variability = Base; random total mortality = Rand; autocorrelated total mortality = Auto; 997 



population-specific total mortality = Pop; low aging error with accurate aging assumed = 998 

AE06I, high aging error with accurate aging assumed = AE10I; low aging error 999 

incorporating aging error matrix = AE06C; high aging error incorporating aging error 1000 

matrix = AE10C). The x-axis indicates the number of source populations, genetic 1001 

divergence among the sources, and mixture fishery sample size.  1002 

Fig. 5.  Recruitment estimates and 95% highest posterior density intervals by year class for Lakes 1003 

Huron and Lakes Erie/St. Clair walleye populations from the estimation approach 1004 

proposed in this study based on collection of individuals from the Saginaw Bay 1005 

recreational fishery (Fig. 1). Also plotted are the recruitment estimates for the same year 1006 

classes from SCAA models constructed for the lakes (Fielder and Bence 2014; WTG 1007 

2014).  1008 

Fig. 6.  Recruitment estimates 95% and highest posterior density intervals by year class for four 1009 

hatchery strains of lake trout stocked into Lake Michigan from the estimation approach 1010 

proposed in this study based on collection of individuals from the MM3 statistical district 1011 

(Fig. 1). Also plotted are the numbers of lake trout stocked in northern Lake Michigan by 1012 

hatchery strain for the same year classes.  1013 
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Appendix A – Description of Source and Mixture Data Simulator 1022 

Source and mixture data were simulated following the hierarchical population structure 1023 

and process of Guo et al. (2008). Allele frequencies for each source and locus were simulated 1024 

from Dirichlet distributions using a two-stage approach (see Fig. A1 for an illustration of this 1025 

approach). In the first stage, hyperpopulations of fixed allele frequencies for the h-th locus (ψh ) 1026 

were generated by a random draw from a Dirichlet distribution with concentration parameters set 1027 

equal to 1 [i.e., ψh ~ D(1) (total number of concentration parameters equal the total number of 1028 

alleles for the h-th locus)]. The simulated allele frequencies at the h-th locus for the i-th source 1029 

were then generated by a random draw from a Dirichlet distribution with concentration 1030 

parameters equal to ( )( ) hψθθ−1 . As noted by Guo et al. (2008), θ serves as a user-specified 1031 

population divergence measure similar to Wright’s FST (Wright 1965). When θ is small, the 1032 

concentration parameters are large, which results in allele frequencies for the h-th locus that are 1033 

very similar to the hyperpopulation of allele frequencies across all sources. Conversely when θ is 1034 

large, the concentration parameters are small, which results in allele frequencies that can vary 1035 

widely among the sources and from the hyperpopulation of allele frequencies.  1036 

For simulations where populations had varying divergence levels (see Simulation factor 1037 

levels), actual allele frequencies were generated using a three-stage approach. In the first stage, 1038 

we generated the ψh using the same method described above [i.e., ψh ~ D(1)]. In the second 1039 

stage, we generated two sub-hyperpopulations of allele frequencies based on random draws from 1040 

Dirichlet distributions with concentration parameters equal to ( )( )
hψθθ HighHigh1−  (i.e., 1041 

( )( )( )
hhg D ψθθφ HighHigh, 1~ − ) where hg ,φ denotes the allele frequencies for the h-th locus for the 1042 

g-th sub-hyperpopulation and 
Highθ simply denotes a “high” genetic divergence factor so that 1043 



expected genetic differences between the two sub-hyperpopulations would be high. We then 1044 

generated the actual frequencies for the h-th locus for each source from random draws from 1045 

Dirichlet distributions with concentration parameters equal to ( )( ) hg,LowLow1 φθθ−  where 
h,1φ was 1046 

used for one-half of the sources and 
h,2φ  was used for the other half (Tsehaye et al. 2016). Here, 1047 

Lowθ simply denotes a “low” genetic divergence factor so that expected genetic differences of the 1048 

source populations within a particular sub-hyperpopulations would be expected to be small. With 1049 

this three-stage approach, each source would be expected to have relatively low levels of genetic 1050 

divergence with half of the sources, and relatively high levels of genetic divergence with the 1051 

other half of the sources. 1052 

Observation error was incorporated in the generation of both allele relative frequencies 1053 

from the sources as well the collection of individuals from the mixture. Genotypes of individuals 1054 

collected from each of the sources were drawn randomly from multinomial distributions with 1055 

probabilities equal to the expected genotype frequencies under Hardy-Weinberg equilibrium and 1056 

the number of trials equal to the source sample size under evaluation (Fig. A1). These 1057 

“observed” genotypes were then used to calculate allele relative frequencies for the sources. Data 1058 

from the mixture were generated by two-stage multinomial random sampling. In the first stage, 1059 

the number of sampled individuals from the mixture that came from each of the sources by age 1060 

in each sampling year was determined by random draw from multinomial distribution with 1061 

probabilities calculated based on the true relative abundances of each source and age for that 1062 

examined scenario, and an assumed total mixture sample size. In the second stage, the genotypes 1063 

of individuals from the mixture that came from each of the sources were generated by random 1064 

draws from multinomial distributions with probabilities equal to the expected genotype 1065 



frequencies for the sources and the number of trials equal to the number of individuals in the 1066 

mixture that came from the sources. 1067 

The true relative abundances at age by source for each simulation were obtained from 1068 

equation 5, based on assumed τ, γ, υ, and Zi,a . In all base simulations Zi,a was fixed at 0.30, but in 1069 

some sensitivity simulations stochasticity in Zi,a  was incorporated in the operating model. 1070 

Relative abundance at age for each source also depended on recruitment, through τ, γ, and υ, 1071 

based on equation 4. The source-specific deviations from grand mean recruitment (τi ) were set at 1072 

6 or 12 fixed levels that depended on the number of sources and the levels of difference in the 1073 

source effects (see Simulation factor levels). Source-specific temporal variation in recruitment, 1074 

as for the estimation model, consisted of the sum of year-class (i.e., coherent temporal) 1075 

deviations (γy ) and source × year-class (i.e., ephemeral temporal) deviations (υi,y). The year-class 1076 

deviations (γy ) were simulated using a first-order autoregressive (AR1) process 1077 

( )2

1

,0~ εσε

εργγ

Ny

yyy += −
,          (A1) 1078 

where ρ is the auto-regressive coefficient. The source × year-class deviations (υi,y) were 1079 

simulated as a white-noise process: 1080 

( )2

, ,0~ υσυ Nyi
.          (A2) 1081 

 The amount of total temporal recruitment variation ( 2

yσ ) and the ratio of how total 1082 

temporal recruitment variation was allocated between year-class variation ( 2

εσ ) and source × 1083 

year-class variation ( 2

υσ ) were two of the factors that were explored during simulations to see 1084 

how they affected accuracy and precision of the proposed estimation approach.   Under an AR1 1085 

process, the stationary variance for the year-class deviations is 1086 



2

2
2

1 ρ

σ
σ ε

γ
−

= .           (A3) 1087 

The overall temporal variation ( 2

yσ ) in simulated loge recruitments was the sum of stationary 1088 

variance for the year-class deviations and the source × year-class variation ( 2

υσ ) 1089 

222

υγ σσσ +=y
.           (A4)  1090 

For all simulations, we assumed ρ was equal to 0.5.  By assuming ρ and specifying the amount of 1091 

total temporal recruitment variation and the ratio of how total temporal recruitment variation was 1092 

allocated between year-class variation and source × year-class variation, we could use equations 1093 

A3 and A4 to solve for 2

εσ . This allowed us to simulate the time series of yγ and yi ,υ according to 1094 

equations A1 and A2 for a particular simulation scenario. 1095 
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 1110 

Fig. A1.  Example illustration for how genetics data were generated for source populations.  1111 

Illustration is for a single locus, assuming 4 alleles per locus, 3 source populations, a population 1112 

divergence factor (j) = 0.06, and a source sample size of 200 fish.  The depicted hyperpopulation 1113 

allele proportions, the source-specific allele proportions, the expected genotype proportions for 1114 

source 3, and the observed genotype counts for source 3 reflect just realizable random draws 1115 

from the assumed distributions and are provided only for illustrative purposes.   1116 
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Appendix B– Description of Lake Trout Hatchery Source Data and Genotyping 1118 

  1119 

According to Page et al. (2003), lake trout stocking efforts in the Great Lakes have 1120 

primarily been based on eight hatchery strains.  For this research, we had tissue samples from six 1121 

of these primary strains, as well as one additional hatchery strain.  Hatchery strains from which 1122 

we had tissue samples included four Lake Superior strains (Isle Royale, Apostle Island, 1123 

Marquette, and Traverse Island), two Lake Michigan strains (Green Lake and Lewis Lake), and 1124 

one Seneca Lake strain.  Page et al. (2003) provides a discussion of the origin of these strains.  1125 

These seven strains have comprised approximately 96% of the lake trout stocked in the northern 1126 

Lake Michigan region from which mixture fishery tissue samples were obtained (USFWS and 1127 

GLFC 2010).  Fin tissue samples from these seven strains were collected by personnel affiliated 1128 

with the hatcheries where broodstock were maintained.  A total of 669 individuals from the 1129 

seven hatchery strains were genotyped for the determination of allele frequencies.   1130 

 Mixture and hatchery strain tissue samples were genotyped at 10 microsatellite loci: Sfo1, 1131 

Sfo12, and Sfo18 (Angers et al. 1995); Scou19 (Taylor et al. 2001); Oneµ9 and Oneµ10 (Scribner 1132 

et al. 1996); Ogo1a (Olsen et al. 1998); Ssa85 (O’Reilly et al. 1996); and Sfo-C24 and Sfo-D75 1133 

(King et al. 2012).  PCR reactions were conducted in either 25 µl volumes using 100 ng of DNA 1134 

(Sfo1, Sfo12, Sfo18, Scou19, Oneµ9, Oneµ10, Ogo1a, and Ssa85) or 10 µl volumes using 40 ng 1135 

of DNA (Sfo-C24 and Sfo-D75).  PCR buffer consisted of 10 mM Tris-HCl at pH 8.3, 50 mM 1136 

KCl, 0.01% gelatin, 0.01% NP-40, and 0.01% Triton-X 100), and locus-specific volumes of 1137 

dNTPs and MgCl2 (Table B1).  PCR cycling conditions also were locus-specific (Table B1).  1138 

Fluorescently labeled forward primers and unlabeled reverse primers were used for Sfo1, Sfo12, 1139 

Sfo18, Scou19, Oneµ9, Oneµ10, Ogo1a, and Ssa85, whereas infrared fluorescently labeled 1140 



forward primers and unlabeled reverse primers were used for Sfo-C24 and Sfo-D75.  For Sfo1, 1141 

Sfo12, Sfo18, Scou19, Oneµ9, Oneµ10, Ogo1a, and Ssa85, PCR products were separated by size 1142 

on a denaturing 6.0% polyacrylamide gel and visualized using a Hitachi FMBIO II Multi-Vew 1143 

scanner (Hitachi Solutions America, San Bruna, CA).  For Sfo-C24 and Sfo-D75, PCR products 1144 

were separated by size on a denaturing 6.5% polyacrylamide gel and visualized using a LI-COR 1145 

4300 DNA Analyzer (LI-COR Biosciences, Lincoln, NE).  1146 

Number of alleles, allelic richness, observed heterozygosity (Ho), and expected 1147 

heterozygosity (He) for each locus and hatchery strain are shown in Table B2. Each hatchery 1148 

strain at each locus was found to be in HW equilibrium at an error rate of 0.000714 after 1149 

Bonferroni correction (Table B2).  Of the 315 possible pairwise combinations between loci for 1150 

the hatchery strains, of hatchery strains and loci, only two pairings were found to be in linkage 1151 

disequilibrium (non-random association between alleles) at an error rate of 0.000159 after 1152 

Bonferroni correction.  These combinations were the following: Isle Royale strain: Ssa85 and 1153 

Sfo-D75; Green Lake strain: Sfo18 and Sfo-C24.  Because linkage disequilibriums for particular 1154 

locus combinations were only found in a single hatchery strain, we did not feel it was necessary 1155 

to exclude any of the loci for which linkage disequilibrium was detected.  1156 

 Pairwise FST values between hatchery strains ranged from 0.001 for the Marquette and 1157 

Apostle Island hatchery strains to 0.090 for the Seneca Lake and Lewis Lake strains (Table B3).  1158 

The 4 hatchery strains from Lake Superior had the lowest pairwise FST values among all the 1159 

assessed combinations.  FST  values did not exceed 0.0180 for any of the Lake Superior hatchery 1160 

strain pairs (Table B3).  Each of the pairwise FST  values was significantly different from 0 at 1161 

P<0.0001; however, conducting 100% mixture simulations in ONCOR (Kalinowski et al. 2007), 1162 

which implements the simulation approach of Anderson et al. (2008) and involves repeated 1163 



(number of iterations = 1,000) generation of mixtures comprised solely of fish from just one of 1164 

the hatchery strains, indicated there was some difficulty in differentiating between the Lake 1165 

Superior strains based on the data available.  Accuracies from the 100% mixture simulations for 1166 

the Lake Superior strains ranged from around 72 to 85%.  In other applications, 90% accuracy 1167 

thresholds from 100% mixture simulations have been the target for sources prior to genetic stock 1168 

identification analyses to reduce the possibility of biases in contribution estimates (Seeb and 1169 

Crane 1999; Beacham et al. 2012; Brenden et al 2015).  Because misallocation between Lake 1170 

Superior hatchery strains could affect the accuracy of the recruitment estimates from our 1171 

estimation approach, we chose to combine all Lake Superior hatchery strains together for the 1172 

purpose of estimating recruitment levels.  Thus, our analyses involved a total of four hatchery 1173 

strains: Lake Superior, Green Lake, Lewis Lake, and Seneca Lake.  Accuracy from 100% 1174 

mixture simulations for these four strains ranged from approximately 95 to 100%.   1175 
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Table B1. Amplification conditions for the 10 microsatellites used to genotype lake trout 1226 

hatchery strains and individuals collected from the northern Lake Michigan mixture 1227 

fishery.  The volumes of dNTP and MgCl2 represent amounts added to PCR buffer.   1228 

Locus dNTP volume 

(mM) 

MgCl2 volume 

(mM) 

Cycling Condition 

Sfo1 0.08 2.5 94°C for 2 m (1 cycle) - denaturing 

94°C for 1 m (35 cycles) - denaturing 

60°C for 1 m - annealing 

72°C for 1 m - extension 

Sfo12 0.2 3.0 94°C for 2 m (1 cycle) - denaturing 

94°C for 1 m (35 cycles) - denaturing 

57°C for 1 m - annealing 

72°C for 1 m - extension 

Sfo18 0.2 3.0 94°C for 2 m (1 cycle) - denaturing 

94°C for 1 m (40 cycles) - denaturing 

50°C for 1 m - annealing 

72°C for 1 m - extension 

Scou19 0.2 2.5 94°C for 2 m (1 cycle) - denaturing 

94°C for 1 m (35 cycles) - denaturing 

46°C for 1 m - annealing 

72°C for 1 m - extension 

Oneµ9 0.2 2.5 94°C for 2 m (1 cycle) - denaturing 

94°C for 1 m (35 cycles) - denaturing 

54°C for 1 m - annealing 

72°C for 1 m - extension 

Oneµ10 0.2 2.5 94°C for 2 m (1 cycle) - denaturing 

94°C for 1 m (35 cycles) - denaturing 

45°C for 1 m - annealing 

72°C for 1 m - extension 

Ogo1a 0.2 1.5 94°C for 2 m (1 cycle) - denaturing 

94°C for 1 m (35 cycles) - denaturing 

52°C for 1 m - annealing 

72°C for 1 m - extension 

Ssa85 0.2 2.5 94°C for 2 m (1 cycle) - denaturing 

94°C for 1 m (35 cycles) - denaturing 

56°C for 1 m - annealing 

72°C for 1 m - extension 

Sfo-C24 0.2 2.75 94°C for 2 m (1 cycle) - denaturing 

94°C for 1 m (33 cycles) - denaturing 

54°C for 1 m - annealing 

72°C for 1 m - extension 



Sfo-D75 0.2 4.00 94°C for 2 m (1 cycle) - denaturing 

94°C for 1 m (32 cycles) - denaturing 

54°C for 1 m - annealing 

72°C for 1 m and 15 s - extension 

72°C for 5 m (1 cycle) - extension 
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Table B2. Genetic variation in lake trout hatchery strains at 10 microsatellite loci screened for this study. Total number of alleles, 1231 

allelic richness, expected (He) and observed (Ho) heterozygosities, and P-values for Hardy-Weinberg equilibrium tests at 1232 

individual loci for each hatchery strains and combined across hatchery strains (total number of alleles and allelic richness 1233 

only) are listed. Also shown are the results when all Lake Superior hatchery strains are combined.  Three genetic fixation 1234 

indices (Weir and Cockerham 1984) for each loci and for all loci are also displayed (FST=mean genetic divergence between 1235 

pairs of spawning populations, FIS=mean genetic differentiation within spawning populations; FIT=deviation in the total 1236 

sample). For the genetic fixation indices calculated for all loci, 95% confidence limits for the indices were derived by 1237 

bootstrapping. NC=Not calculated 1238 

Locus Hatchery Strain Alleles 

Allelic 

Richness 

He Ho 

HWE      

P-value 

FST FIS FIT 

Sfo1 All strains 3 2.9 NC NC NC 0.080 0.010 0.089 

 Isle Royale 3 3.0 0.16 0.17 1.000    

 Apostle Island 3 3.0 0.20 0.21 1.000    

 Marquette 3 3.0 0.15 0.16 1.000    

 Traverse Island 3 3.0 0.31 0.28 0.028    

 Green Lake 3 2.7 0.09 0.09 1.000    



 Lewis Lake 2 2.0 0.05 0.03 0.053    

 Seneca Lake 3 2.7 0.42 0.41 0.430    

 

All Lake Superior 

strains 

3 3.0 0.20 0.20 0.312    

Sfo12 All strains 5 4.1 NC NC NC 0.025 -0.003 0.023 

 Isle Royale 4 3.7 0.31 0.28 0.449    

 Apostle Island 4 4.0 0.26 0.29 0.912    

 Marquette 5 4.9 0.24 0.24 0.575    

 Traverse Island 4 4.0 0.39 0.35 0.113    

 Green Lake 3 3.0 0.27 0.31 0.702    

 Lewis Lake 4 3.9 0.15 0.15 1.000    

 Seneca Lake 3 3.0 0.38 0.37 0.330    

 

All Lake Superior 

strains 

5 4.4 0.30 0.29 0.285    

Sfo18 All strains 11 7.6 NC NC NC 0.068 -0.089 -0.016 

 Isle Royale 9 8.3 0.63 0.66 0.074    



 Apostle Island 7 6.3 0.61 0.66 0.612    

 Marquette 7 6.2 0.57 0.61 0.749    

 Traverse Island 6 6.0 0.56 0.58 0.850    

 Green Lake 6 5.6 0.58 0.70 0.013    

 Lewis Lake 7 6.3 0.63 0.70 0.953    

 Seneca Lake 4 4.0 0.41 0.45 0.754    

 

All Lake Superior 

strains 

10 7.7 0.60 0.63 0.405    

Scou19 All strains 12 8.3 NC NC NC 0.023 -0.001 0.023 

 Isle Royale 9 8.4 0.65 0.64 0.544    

 Apostle Island 7 6.9 0.69 0.62 0.555    

 Marquette 10 8.8 0.71 0.73 0.005    

 Traverse Island 7 7.0 0.73 0.71 0.520    

 Green Lake 8 7.3 0.76 0.81 0.445    

 Lewis Lake 7 7.0 0.69 0.70 0.465    

 Seneca Lake 7 6.3 0.72 0.74 0.760    



 

All Lake Superior 

strains 

11 8.2 0.70 0.67 0.375    

One9 All strains 6 3.8 NC NC NC 0.008 0.007 0.015 

 Isle Royale 3 3.0 0.13 0.12 0.353    

 Apostle Island 3 3.0 0.13 0.13 1.000    

 Marquette 6 5.7 0.20 0.21 1.000    

 Traverse Island 3 3.0 0.08 0.09 1.000    

 Green Lake 2 2.0 0.15 0.14 0.486    

 Lewis Lake 3 3.0 0.10 0.09 0.219    

 Seneca Lake 3 2.7 0.15 0.15 0.082    

 

All Lake Superior 

strains 

6 4.3 0.14 0.14 0.881    

One10 All strains 4 2.2 NC NC NC 0.038 -0.055 -0.05 

 Isle Royale 2 2.0 0.26 0.24 0.454    

 Apostle Island 2 2.0 0.31 0.36 0.181    

 Marquette 2 2.0 0.23 0.26 0.349    



 Traverse Island 3 3.0 0.29 0.23 0.228    

 Green Lake 2 2.0 0.30 0.31 1.000    

 Lewis Lake 3 2.7 0.48 0.53 0.181    

 Seneca Lake 2 2.0 0.38 0.41 0.417    

 

All Lake Superior 

strains 

3 2.2 0.27 0.27 0.867    

Ogo1a All strains 8 4.3 NC NC NC 0.098 -0.002 0.096 

 Isle Royale 3 3.0 0.33 0.36 0.545    

 Apostle Island 4 3.7 0.48 0.41 0.166    

 Marquette 3 3.0 0.44 0.44 0.212    

 Traverse Island 4 4.0 0.38 0.35 0.024    

 Green Lake 4 3.7 0.53 0.60 0.437    

 Lewis Lake 6 5.7 0.65 0.63 0.188    

 Seneca Lake 4 3.7 0.60 0.62 0.678    

 

All Lake Superior 

strains 

4 3.5 0.42 0.39 0.073    



Ssa85 All strains 7 4.3 NC NC NC 0.057 -0.068 -0.007 

 Isle Royale 4 4.0 0.64 0.64 0.030    

 Apostle Island 5 4.7 0.54 0.63 0.203    

 Marquette 4 4.0 0.47 0.48 0.642    

 Traverse Island 4 4.0 0.49 0.49 0.652    

 Green Lake 4 3.9 0.54 0.57 0.717    

 Lewis Lake 4 3.7 0.62 0.67 0.603    

 Seneca Lake 3 2.7 0.50 0.58 0.120    

 

All Lake Superior 

strains 

5 4.2 0.55 0.57 0.118    

Sfo-C24 All strains 4 3.1 NC NC NC 0.042 -0.038 0.005 

 Isle Royale 3 3.0 0.55 0.48 0.117    

 Apostle Island 3 3.0 0.59 0.57 0.255    

 Marquette 3 3.0 0.51 0.64 0.001    

 Traverse Island 3 3.0 0.61 0.58 0.928    

 Green Lake 3 3.0 0.32 0.33 1.000    



 Lewis Lake 3 3.0 0.47 0.58 0.063    

 Seneca Lake 4 3.7 0.52 0.55 0.594    

 

All Lake Superior 

strains 

3 3.0 0.57 0.56 0.623    

Sfo-D75 All strains 24 14.2 NC NC NC 0.030 -0.016 0.015 

 Isle Royale 15 13.9 0.87 0.92 0.674    

 Apostle Island 14 13.2 0.87 0.89 0.988    

 Marquette 14 12.8 0.85 0.87 0.094    

 Traverse Island 12 12.0 0.88 0.90 0.003    

 Green Lake 11 10.1 0.81 0.86 0.053    

 Lewis Lake 11 10.9 0.83 0.83 0.101    

 Seneca Lake 14 13.9 0.88 0.79 0.006    

 

All Lake Superior 

strains 

19 14.0 0.88 0.90 0.498    

  Fixation indices over all loci 0.048 -0.030 0.019 

  (95% bootstrap confidence limits) (0.033 – 0.065) (-0.053 – -0.010) (0.001 – 0.044) 
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Table B3. Pairwise mean genetic differentiation indices (FST) calculated from 10 microsatellite 1240 

loci for the seven lake trout hatchery strains for which tissue samples were available. 1241 

Hatchery Strain Isle Royale Apostle Island Marquette Traverse Island Green Lake Lewis Lake 

Apostle Island 0.0127*      

Marquette 0.0144* 0.0095*     

Traverse Island 0.0142* 0.0124* 0.0180*    

Green Lake 0.0329* 0.0389* 0.0201* 0.0546*   

Lewis Lake 0.0468* 0.0451* 0.0590* 0.0668* 0.0379*  

Seneca Lake 0.0859* 0.0619* 0.0822* 0.0794* 0.0879* 0.0901* 

*significantly different from 0 at alpha = 0.05/21 = 0.002381 1242 
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Appendix C – MCMC Traceplots from Saginaw Bay Walleye and northern Lake Michigan Lake 1247 

Trout Applications 1248 

 1249 

Fig. C1. Overlain traceplots for relative recruitments from Lake Huron and Lakes Erie/St. Clair 1250 

for the 2002 to 2006 year classes for the five MCMC chains that were simulated for the Saginaw 1251 

Bay, Lake Huron walleye application of the proposed estimation approach for indexing 1252 

recruitment fluctuations in populations contributing to mixtures. 1253 
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 1254 

Fig. C2. Overlain traceplots for relative recruitments for Lewis Lake, Seneca Lake, Green Lake, 1255 

and Lake Superior hatchery strains for the 2003 to 2008 year classes for the five MCMC chains 1256 

that were simulated for the northern Lake Michigan lake trout application of the proposed 1257 

estimation approach for indexing recruitment fluctuations in populations contributing to 1258 

mixtures. 1259 


